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Abstract

Virtualization is a well-known technique to facilitate a variety of use cases in both desktop
and server environments. Increasingly, security becomes an important aspect of virtualiza-
tion because it allows for consolidating multiple workloads on a single physical machine
in a protected manner. Recent processor development shifted from increasing single-core
performance to integrating multiple cores onto one chip, resulting from the physical limits
imposed on the design of microprocessors. It was only a question of time until virtualization
followed this trend and supported running several virtual machines truly in parallel, at first
multiple single-core ones, then even virtual multi-core. In the full virtualization solution of
the TU Dresden, the NOVA OS Virtualization Architecture (NOVA), SMP is only supported
in the first variant, while multiple CPUs of a guest system have to share the same physi-
cal core. The goal of this thesis is to explore how this limitation can be eliminated with
maximum efficiency, passing on as much available compute power to the guest as possi-
ble. By identifying and enhancing the critical synchronization mechanisms inside the VMM,
the presented solution accounts for maximum scalability in the current environment while
keeping the modifications modular and maintainable. A detailed evaluation of the inter-
mediate implementations justifies the final solution and an outlook shows opportunities for
improving and extending the virtual multiprocessor support in NOVA.
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1 Introduction

Be it the simple fact that software developed for a specific operating system should be run
on top of a different system, the large-scale consolidation efforts in data centers across the
globe, or any other spot within this spectrum that best describes the particular use case:
Virtualization is a problem solver. It provides convenience by supporting multiple operating
systems on a single machine without the need to reboot. It helps save power consumption
by allowing for server consolidation.

Power issues are not only relevant in environmental or economic regards, but can also
impose physical limits on how higher performance in computer systems can be achieved.
After a long time of simply increasing the performance of a single processor, semiconductor
technology was facing obstacles like the power wall [12], which essentially limited the
amount of improvement possible with the system design at that time. In order to further
gain performance, multiple cores were integrated onto one processor die to herald the era
of multi-core systems.

In times where nearly every available computer provides several processor cores, it is
imperative for virtualization techniques to also leverage this vector of performance im-
provements and, most importantly, not to impede this progress. Many workloads in server
environments hold great opportunities for parallel execution, e.g. web servers, databases
or cloud services. However, providing a virtual multi-core system is not a simple matter.
Overheads and anomalies can have an extensive impact on the degree of scalability that
can be accomplished when virtualizing parallel workloads. As for instance recent cloud
computing research discovered, the mere deactivation and reactivation of temporarily idle
cores (e.g., due to synchronization) can cause severe performance degradation compared
to running it natively [35].

However, not only performance, but also security becomes an important topic when
consolidating multiple machines onto one physical host. Unrelated services that were pre-
viously physically separated are now potentially vulnerable to a new kind of attacks. Taking
over the virtualization layer means full control over all software components running on
top of it. To prevent this, a secure and robust isolation has to be in place, guaranteeing that
a virtual machine can at most compromise itself. However, the complexity of most modern
virtualization solutions renders it almost impossible to maintain this property. In order
to exhibit as little attack surface as possible or even for security properties to be formally
verifiable, the Trusted Computing Base (TCB)1 has to be kept to a minimum.

1 Amongst a variety of expressions, the term TCB was defined by Lampson et al. as “a small amount of
software and hardware that security depends on and that we distinguish from a much larger amount that
can misbehave without affecting security [19]”.
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One approach to a minimal TCB in research is the use of microkernels. By reducing
the amount of code allowed to execute security-critical instructions, it is possible to greatly
reduce the size of the TCB with respect to the operating system kernel. Just recently,
the importance of secure virtualization and the potential of microkernels was shown by
a commercially available smartphone called SiMKo3, providing a private and a business
virtual machine running side by side, securely isolated from each other [8]. Working
environments handling sensitive data are kept safe in a restricted, secure VM. Private or
untrusted activities like multimedia can take place still on the same device, but in their
own VM without the restrictions, but separated from sensitive data. The technology behind
this high security phone is a combination of virtualization and security components. An
underlying L4 microkernel developed at the TU Dresden implements the basic mechanisms
needed to concurrently operate two securely isolated instances of the Android mobile
operating system on the high security phone.

Although the technique used in the secure smartphone is a form of virtualization, it
still requires modifications to the operating system (i.e., it uses Paravirtualization). With
the aim of supporting unmodified guest software, another architecture was developed at
the TU Dresden from scratch with strong focus on hardware-assisted virtualization. A min-
imal microkernel together with a user-space application formed the base of the NOVA OS
Virtualization Architecture (NOVA). To date, it supports running unmodified guest operating
systems including Linux and several L4 variants.

While NOVA already supports multiple processors and the user-level environment is able to
run different services and virtual machines on different physical CPUs, the virtual machines
themselves have no true multi-core support. Although several virtual processors can be
configured, they all execute on the same physical core. Solutions based on NOVA would
thus not be able to make use of one of the main performance improvement mechanisms
available today.

To remove this limitation, virtual processors have to be distributed among the physical
ones and the virtualization environment needs to provide efficient and scalable mecha-
nisms to pass the gain in resources on to virtual machines. Extending the findings of power
management in a virtual machine being a problem [35], the scalability of virtual multi-core
systems is not only determined by the frequency of virtualization events, but also by the
degree of parallelism they can be served in. The goal of this thesis project is to enable guest
software to leverage multiple processors as well as to identify performance-critical code
paths within the virtualization layer that need to be improved with respect to scalability
characteristics.

After describing the technical background in terms of concepts and software in Chap-
ter 2, I will describe the design space, the proposed solution and its implementation
details in Chapters 3 and 4. After evaluation of the achieved functionality in Chapter 5, an
overview about future work in Chapter 6 will lead to a conclusion and outlook in Chapter 7.
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2 Technical Background

In this chapter, I will introduce the technical prerequisites my work is based on and describe
the concepts of the environment it has been developed in. Besides explaining essential
terms and surrounding software components, a short section about related and similar
solutions will help classify the scope of the thesis.

2.1 Basic Concepts

2.1.1 Microkernels

One of the main reseach areas of the TU Dresden Operating Systems Group (TUD:OS) is
reducing code complexity of security-critical systems. A suitable approach to this was found
in the use of microkernels [1]. Already in 1995, Jochen Liedtke published a description of
concepts and construction primitives that have to be incorporated into such microkernels
in order to provide an efficient and secure base for an operating system on top of them [22].

Liedtke stated that “a concept is tolerated inside the µ-kernel only if moving it outside
the kernel, i.e. permitting competing implementations, would prevent the implementation
of the system’s required functionality.”, thereby defining the minimality criterion of those
kernels. The identified abstractions to be provided by the kernel are address spaces, threads
and inter-process communication (IPC). Based on these mechanisms, services outside the
kernel can be implemented to provide for example device drivers, user interaction, etc. By
adhering to the Principle Of Least Authority (POLA), where every subsystem is only given
the minimum amount of rights, componentized systems can be built securely.

As a result of the different approach pursued by microkernel-based systems, software
like device drivers would have to be completely rewritten in order to function with the
interface provided by the kernel. However, commodity operating systems often already
include such drivers and applications. To be able to reuse this legacy software on top of a
microkernel, several techniques have been researched, including the use of virtualization
to use the original operating system as a wrapper around the component that should be
reused.

2.1.2 Virtualization

The use of virtualization to create a simulated environment mostly transparent to the soft-
ware running on top of it (i.e., to guest software) is by no means a modern concept. It has
been pioneered by IBM in mainframe systems in the 1960s, and in 1973 Robert P. Goldberg
defined the architectural principles of virtualized systems in his PhD thesis [10].
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2 Technical Background

To enable the virtualization environment to provide the illusion of a real system, privi-
leged instructions that are critical to the host system (e.g., they mask hardware interrupts)
have to be protected from being used by guest software, although these instructions are
expected to have the desired effect. A common solution to this gap is called trap and emu-
late, which means that every operation that must not be executed directly on the hardware
is being trapped to the Virtual Machine Monitor (VMM), the software part responsible for
maintaining the virtual machine state for the guest. The trapped instruction then gets
emulated, before the guest resumes its operation. If the VMM models a complete system
such that guest software does not need to be modified, the technique is also called faithful
virtualization.

A very common architecture for commodity and server hardware is x86, first introduced in
the 8086 processor by Intel [14]. The original design, however, was not entirely compatible
with trap and emulate due to so-called virtualization holes [26]. These are instructions with
different effects depending on the privilege level, but do not trap. One possible solution
to close this gap was binary translating the executed code, replacing the affected instruc-
tions by code correctly handling the different behavior. Amongst other problems, this
caused early virtualization solutions to be very complex, which led processor vendors to
develop virtualization extensions for their hardware (Intel VT-x [15], AMD SVM [2]). By
introducing a new mode of operation (guest mode), it was possible to execute guest code
natively even in privileged mode, while additional control structures and instruction set
extensions allowed for the necessary traps, transferring control to the host mode, where
the virtualization layer then emulates the expected behavior. In succeeding generations of
hardware virtualization support, not only complexity, but also performance issues became
subject of improvements.

The aforementioned problems and evolved solutions are not limited to the x86 archi-
tecture, but can be found in a very similar shape in other systems (e.g., POWER, ARM,
MIPS), as well. However, this thesis project will remain focused on VT-x enabled systems.

2.1.3 NOVA OS Virtualization Architecture

In the context of secure virtualization environments, the TUD:OS group developed a re-
search vehicle with the aim of a minimal Trusted Computing Base (TCB) [28]. Componen-
tizing the virtualization layer into separate subsystems already led to a shift in terminology
in related publications [21]. Adhering to their definition, in this thesis, the terms hyper-
visor and VMM will describe distinct pieces of software. The privileged part of NOVA is
called the microhypervisor due to its microkernel approach and is responsible for secure
and efficient isolation and communication mechanisms. In contrast to the privileged part
of other solutions like KVM or Xen, the microhypervisor only implements critical parts with
respect to security, isolation, and performance. Examples are the management of virtual
machine control structures, memory management, scheduling, and driving physical inter-
rupt controllers. Device drivers or virtualized components that are not considered critical
are provided by the user-level environment.
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Hardware

Microhypervisor

kernel mode
       user mode

Runtime Environment

Host Drivers Services Applications

VMM Device Models

  non-root mode
         root mode

VMM Device Models

VM VM

Figure 2.1: Overview of NOVA design

2.1.3.1 NOVA Microhypervisor Primitives

To provide a basic understanding of the responsibilities of the hypervisor, this short section
shall explain the essential mechanisms provided and how they relate to virtualization
events.

Following the microkernel approach, the NOVA microhypervisor provides the three ba-
sic abstractions:

• Address spaces isolating processes are called Protection Domains (PD),

• Threads are formed by Execution Contexts (EC) and Scheduling Contexts (SC),

• Inter-process communication is established via Portals.

The traditional notion of a thread as an activity that can be dispatched by the OS scheduler
is equivalent to an EC with an SC attached to it. Communication between components is
performed by assembling a message payload and then calling the respective portal using
a system call. These portals have a handler EC assigned which then gets invoked. The
differentiation between EC and SC is important in this process, because the caller donates
its scheduling context to the handler. Consequently, the communication resembles a simple
remote function call and the request is being handled with the priority and on the CPU
share of the initiator. A more in-depth discussion of architectural and conceptual details
can be found in [28].
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2 Technical Background

2.1.3.2 VM Handling

Each virtual machine in the system is managed by a user-level (i.e., unprivileged) VMM
named Vancouver. All components of a physical system (e.g., functionality integrated in the
motherboard chipset, storage and network devices, etc.) are emulated by the VMM. Con-
nection to real peripherals like physical network or storage can be provided by dedicated
user-level services.

The VMM itself is based upon a design resembling the architecture of a real system as
illustrated by Figure 2.2. Central element is a collection of busses (e.g., memory, I/O,
etc.), connecting the various components within the VMM, the virtual motherboard. Device
models can be attached to those according to their needs. Executing device code is done
by sending messages of the respective type, although this kind of message-passing differs
from the traditional meaning. Rather than sending a message to another entity and letting
it process it, the message infrastructure in Vancouver translates into pure function calls at
compile time.

I/O Busses
Memory Bus

APIC Bus
Hostop Bus

vCPU 1

Motherboard

...

Virtual Network DeviceVMM and Host Services

...
Instruction 
Emulator LAPIC

...

vCPU bus
Memory Bus
LAPIC Bus

vCPU n

...

Instruction 
Emulator LAPIC

vCPU Bus
Memory Bus
LAPIC Bus

Virtual Timer Device

Figure 2.2: Overview of Vancouver bus topology (excerpt)

As a better understanding of how device emulation is achieved in this particular environ-
ment is essential for the later described problems and solutions, Figure 2.3 on the next
page illustrates a simplified scenario of a VM programming a virtual Programmable Interval
Timer (PIT), using the example of setting up a one-shot timer interrupt at a specific time.
The OS issues a port I/O write to the PIT, loading a counter register with the respective
timeout value, and then waits for the timer interrupt to occur.

Every device emulation event originates from either a trapped guest instruction or an
external event signalled by an interrupt. Whenever this trap was related to the virtual
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Figure 2.3: Example scenario of device emulation in Vancouver
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2 Technical Background

machine and is not handled directly by the hypervisor, the control flow will be directed to
the VMM by calling the portal installed for the respective event. Effectively, the vCPU thread
then runs VMM code rather than guest code. In the particular example of programming a
PIT, the VM exit would result in executing the I/O exit portal handler, with the information
about the exit reason transferred as message payload. Receiving a port I/O event, the
handler code now assembles a MessageIOOut and places it on the bus. Within the device
models attached to it, the destination of the message is checked and appropriate actions
are taken. In the virtual PIT, the port write results in a call to the host timer connection
to effectively simulate a counter, eventually resulting in a virtual interrupt. After the vCPU
has completed all those steps, it resumes operation directly behind the trapped instruction.

Instead of trapping due to guest instruction execution, the guest can be deliberately
called in to execute VMM code to react to external events. If for instance the timeout
programmed earlier finally expires, the timer service will be notified and now on its part
use the timeout bus to emulate an elapsed countdown in the virtual PIT. After prioritizing
and sanity checking, the thread will then finally issue a request to the vCPU to exit and
process the virtual interrupt request.1 This mechanism is called a recall and is achieved by
sending a MessageHostOp on the bus. In the assigned recall portal, the vCPU would then
take appropriate action.

2.1.4 Symmetric Multiprocessing (SMP)

During the last decade, single-processor performance began to level as technology hit the
power wall [12, p. 4]. As a result, processor design started to integrate multiple compute
units in order to improve performance. Most commonly, multiple identical processors,
connected to a unified main memory, are available to a single operating system. This
ongoing trend of Symmetric Multiprocessing resulted in multi-cores being found almost
everywhere, even in mobile phones. It is only a logical consequence that virtualization
should also leverage this new source of performance both for running several VMs on one
host and even allowing virtual machines equipped with multiple cores.

Basically, the existing concept was easily extensible to SMP by just assigning more than one
virtual CPU (vCPU) to the guest. However, synchronization issues in the emulation process
explained in Section 2.1.3 now become more prominent and, most importantly, can be
major reasons for lacking scalability. With n vCPUs trying to access the same device model
and possibly a host service doing the same, n+1 instead of two threads are executing
critical paths at the same time. Obviously, this problem becomes more prominent, the
larger the SMP system grows. It is therefore of high importance to a holistic VMM design
to use efficient mechanisms to allow for minimum overhead.

2.1.4.1 Scalability and Synchronization in SMP Systems

Merely adding n additional compute units to a system does not automatically improve per-
formance by the factor n. Software running on multiple processors has to divide the work

1 For simplicity reasons, minor intermediate steps of bus interaction are omitted.

8



2.1 Basic Concepts

across the available cores in order to achieve maximum performance. Generally speaking,
the speedup resulting from an improvement is determined by the amount of acceleration the
enhancement provides, and the fraction of time the improvement can be used [12, p. 46],
known as Amdahl’s Law [3]. In the specific case of multiple processors, the theoretical
maximum speedup S depending on the number of cores N and the parallel fraction of the
algorithm P can be expressed using an equational form of the law as given in Equation 2.1.

S(N) =
1

(1− P) + P
N

(2.1)

One important influencing factor of the serial fraction is the amount of synchronization
between concurrently executing threads. Critical sections that must never be executed by
more than one thread at a time are by definition a serial part of the algorithm. There exist
several techniques for protecting critical sections:

• Coarse-grained locking: Data structures or objects are protected by a single lock,
guarding larger sections of the program even though the critical part may be signifi-
cantly smaller.

• Fine-grained locking: Locks are held specifically where it is necessary. Usually this
results in a higher number of lock objects and a more complex design, but allows for
more parallelism.

• Atomic operations: Locks are applied on instruction level. Common hardware archi-
tectures provide instructions or instruction modifiers that guarantee the result to be
visible atomically with no intermediate inconsistent states.

• Transactional memory: Critical sections can be marked as transactions that get rolled
back and re-executed when concurrent updates led to inconsistencies.

Besides compromising scalability, locking mechanisms can also entail execution flow issues.
Lock implementations have to deal with fairness (i.e., every thread can enter the critical
section after a comparable waiting time) and deadlocks (when locks form a circular depen-
dency and no one can proceed). Atomic operations can be used to tackle these issues by
enabling algorithms to present with one of the following properties:

• Lock-freedom: Eventually, at least one thread makes progress.

• Wait-freedom: Eventually, every thread makes progress.

In fact, every wait-free algorithm is automatically lock-free [13, p. 60]. When at least one
thread always advances in its program execution, deadlocks are not possible. But it can
still happen that some threads get starved because another thread always interferes with
the successful finalization of their update. Wait-free algorithms, on the other hand, provide
fairness in that starvation is not possible.

However, the more parallelism is allowed, the more complex thread synchronization
gets, and potentially produces more locking overhead. Furthermore, there exist cases

9



2 Technical Background

where for example wait-freedom is not feasible. This leaves the fairness to be achieved by
other measures.

2.2 Related Work

Before discussing the design possibilities to be considered in the design of an SMP-enabled
Vancouver VMM, a short overview of existing research and development in this field shall
offer examples of similar solutions as well as surrounding research topics not covered in
this thesis.

2.2.1 Solutions in Other Virtualization Architectures

Other virtualization solutions mostly use locks for mutual exclusion (also called mutex) in
the emulation code paths. For example, qemu [4] uses a global mutex for everything within
the VMM. Traditionally, all guest execution and I/O handling has been performed in one
single thread. Even with multiple virtual CPUs, this single thread would multiplex execu-
tion among all activities. Later, the architecture was migrated to using a multi-threaded
model. Communication with external entities (i.e., files, host network, etc.) are now
handled by an I/O thread which is blocked until it gets assigned work. Every virtual CPU
is executed by a dedicated thread. However, all code paths of device emulation and I/O
thread communications are still synchronized using the global mutex. The original design
of qemu as an application running in user-space entirely achieved x86 virtualization by a
component called Tiny Code Generator (TCG), providing dynamic binary translation [5].
Even though parallel execution of vCPUs is supported, the TCG is not thread-safe and
therefore serializes guest instruction whenever such translation is necessary [27].

To be able to benefit from multiple CPUs, the second mode of operation uses the Kernel-
based Virtual Machine (KVM) [11], which features hardware-assisted virtualization and
fine-grained locking of affected subsystems or critical sections and therefore a higher de-
gree of parallelism in virtualization handlers. Guest execution control is done using system
calls on a special device node /dev/kvm, provided by the kernel. Whenever guest execution
causes a VM exit, the KVM kernel module gains control over the system and decides which
action should be taken according to the exit reason. If the event is handled by the kernel
(e.g., it was an access to the interrupt controller), KVM applies the respective modifications
to the guest and device model states and resumes guest execution. Events that are not
handled by the kernel are propagated into userspace, where virtual devices like input, disk
or network are provided. Figure 2.4 on the facing page depicts the execution loop as found
in the publication about the architecture and operational details of KVM [18].

The architecture of qemu in combination with KVM is very similar to NOVA in that a
user-level component provides VMM functionality and interfaces with the hypervisor via
system calls. However, integrated device models into KVM (PIC, APIC, I/O APIC) and the
code complexity of the Linux kernel where KVM resides form two fundamental differences
to the microkernel approach.
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Figure 2.4: Guest execution loop in KVM [18]
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2 Technical Background

2.2.2 Virtualization Overhead Impairing SMP Scalability

While synchronization in VMM functionality is not being actively researched in publica-
tions, dependencies between multiple processors inside a VM have been analyzed. The
findings of a severe slowdown of a virtualized benchmark compared to native execution
could be traced back to a large overhead when virtual CPUs get shut down due to guest
synchronization (i.e., mutex blocking). Rescheduling and wake-up IPIs were identified as
major contributors to the overhead responsible for the performance degradation [35]. A
similar effect was found with OpenMP-workloads, where the particular implementation of
a barrier involved the hypervisor and thereby caused parallel execution to be even slower
than the sequential one [29]. These publications show that virtualized SMP is not always
faster than uniprocessor execution and that exit handling paths can have a severe impact
on scalability.

2.2.3 Multiple Virtual Machines on the Same Host

A very common usage of virtualization, especially in cloud server architectures, is to
consolidate several machines that are not fully utilized into one large server with higher
utilization to reduce waste of energy resources. Hence, servers often run multiple virtual
machines concurrently on the same host.

As long as each virtual machine has its own distinct set of physical cores to execute
on, there is no special treatment necessary. However, idle VMs again impede maximum
global utilization of the system, which was the goal of the consolidation in the first place.
Therefore, vCPUs should share physical cores. But this could have serious effects on the
performance of a VM, if for instance the virtual CPU holding a kernel lock gets preempted
in favor of a different VM. All other vCPUs of the first VM then potentially do busy-waiting,
thus wasting CPU cycles without doing any useful work. This effect is called Lock Holder
Preemption [31].

Consequently, most ongoing research revolves around the question how to schedule vCPUs
of different VMs on the same host achieving maximum utilization of available resources.
Especially when overcommitting the system (i.e., assigning more vCPUs than physically
existing processors), this issue becomes very challenging [34].

While in KVM vCPU threads are being treated as regular threads subject to the Linux
scheduling algorithm, the open-source hypervisor Xen even provides three different dedi-
cated CPU schedulers, developed over several years [30]. They allow for assigning weight
values to VMs that the scheduler then uses to allocate CPU resources accordingly. The main
advantage of their most recent version, the Credit Scheduler, is automatic load balancing
on multiple processors.

Next, I will present possible solutions to improve the current proof-of-concept SMP imple-
mentation of Vancouver, enabling it to run highly scalable VM configurations utilizing a
high number of cores.
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As described in Section 2.1.3.2, virtualization events are being handled by several dedicated
threads in the VMM. Besides the vCPUs, each of which represented by its own handler, con-
nections to I/O and host services are established via another set of threads (e.g., the timer
service handler). Because all those threads potentially access the same data structures, it
has to be guaranteed that no data corruption can occur. Even if they all execute on the same
physical CPU, preemption can still lead to quasi-concurrent access. However, the guest op-
erating system only implements synchronization mechanisms with respect to the behavior
of physical hardware. Consequently, the VMM has to provide device models that behave
as expected. In order to be able to meet this requirement, two properties of a virtualized
system have to be considered:

• Virtual devices are implemented in software. In some cases, they behave differently
from hardware with respect to timing and atomicity.

• Some devices are accessed by not only the vCPU threads, but also host services.

To provide the guest with the virtual system it expects, additional protection against con-
current accesses has to be in place such that the virtual hardware appears to behave like
real hardware, although the underlying mechanisms might differ. Intended as a proof-of-
concept, the original VMM used a global semaphore which synchronized all threads in the
VMM, i.e., vCPUs and services.

However, the goal of efficient virtualization is to introduce as little overhead as possi-
ble. When virtual devices are emulated in software, an inherent virtualization overhead is
introduced. Even though this overhead can be mitigated to a certain degree by leveraging
hardware extensions and optimizing the device model code in general, there will always
remain a constant performance loss compared to native execution when there are virtual-
ization events to be handled. Moving towards multiprocessor systems, it is important to
avoid introducing additional overhead that might even increase with the number of CPUs.
The reason why such performance issues can arise is due to synchronization among the
concurrently executing threads. It is the first and foremost goal to exploit as much paral-
lelism as possible and not to have vCPUs wait for events unrelated to their own execution.
The global semaphore in the original implementation is not optimized in this regard as it
serializes everything within the VMM.

In the remainder of this chapter, I will analyze the implications of the serializing be-
havior and discuss solutions to how the VM exit and device access handling of virtual CPUs
can be done more efficiently.

13
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3.1 Analysis of Contention on the Global Lock

Before developing a design to solve the problem of global lock contention, it is necessary to
assess the way it manifests itself when a virtual SMP system is running and get an idea of
what can be achieved by a better design. In the first stage, I distributed the vCPUs among
distinct physical cores and ran a kernel compile with up to eight cores to evaluate the
scalability that can be achieved with this approach. During the experiment, I took samples
of the amount of time threads were blocked on the global semaphore. With Amdahls’s Law
in mind, as described in Section 2.1.4.1, this is expected to be the factor that influences
scalability the most, because it is in essence lost computation time and directly affects the
parallel fraction.

Figure 3.1 on the next page shows the average number of clock cycles that a thread
had to wait for the global lock. The tail of the distribution (i.e., wait times longer than
50000 cycles) is aggregated into the last data point. It can be clearly seen that with a
higher number of cores, longer wait times become more frequent. The tail can be seen
increasing from zero for the single-processor run up to over 6000 times for eight CPUs.
Although being only an excerpt of the complete run, the distribution clearly indicates the
potential for performance improvements when removing the global lock and replacing it
with a more targeted synchronization mechanism. Figure 3.2 on the facing page supports
this assessment, as it shows a continously growing performance loss compared to native
execution when scaling up to a higher number of cores, and sets the baseline that improved
solutions will be compared against.

Having established that serializing all requests greatly impedes SMP performance, the
global lock approach shall now be replaced by a more sophisticated mechanism developed
in the process of this thesis. There exist two major categories in the design space:

• Inspired by the use of threads handling events related to external events, a dedicated
I/O thread is installed. Virtual CPUs and other threads merely queue their requests
and synchronize with the outcome, if necessary. While all requests are still being
serialized, it is still possible to improve scalability using this model, because the vCPU
only has to wait for a certain portion of its events.

• Requests of virtual CPUs and other service threads (e.g., the host timer connection)
are handled in their own context. From accounting perspective, this approach is
preferable, as the threads pay for their own I/O handling. However, synchronization
overhead in the VM exit path directly reduces available compute time for the VM.

In the following sections, I will describe different possibilities in the two categories men-
tioned above, assess their advantages and disadvantages and identify potential difficulties
in implementing them in the final solution.
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3.2 Dedicated I/O Thread

Figure 3.3 on the next page shows a high-level overview of how the I/O thread approach
works in general. Whenever a request has to be handled on behalf of a vCPU or a service
thread, a queue element is created, containing all information needed to process it. After
the enqueue operation, the client then waits for the handler to finish. The I/O thread
maintains a simple First In First Out (FIFO) queue, handling incoming requests one by one.
This way, it is guaranteed that device models are never being accessed by more than one
thread at any point in time. When the request has been completed, the client gets notified
and can extract the result of the operation. Effectively, this naive concept is no improvement
over the global lock. In fact, it would even decrease performance because of the overhead
of assembling and enqueueing requests, the I/O thread would simply act as a global lock.

3.2.1 Posted Writes

However, the enqueuer does not need to wait for the completion of all kinds of events.
The I/O thread enables the synchronization algorithm to distinguish between synchronous
and asynchronous requests. While read operations are inherently synchronous, most write
operations can be handled asynchronously. As shown in Figure 3.4 on the facing page, the
client can return to its work immediately after the enqueue completed. This method is also
referred to as posted write and is found for example in the PCI bus. The overall design of
this approach then resembles the PCI root complex of modern computer systems, which is
capable of transparently buffering posted write transactions and thereby decreasing the
latency of such requests. But is important to be aware of the implications of posted writes.
Transparent buffering indicates the completion of the request before the effect is globally
visible. It has to be ensured that subsequent read accesses to the same location process the
latest data from the buffer, if necessary. The I/O thread design guarantees that reads issued
after write requests are always executed in-order and never access stale data.

High-performance devices optimized for those PCI access latency properties fit the I/O
thread model well. Because avoiding read requests can improve performance also when us-
ing physical hardware, drivers increasingly rely on write accesses as much as possible. With
the advent of MSI and MSI-X (Message Signalled Interrupts) capabilities of PCI devices,
shifting high-speed I/O handling towards a more write-oriented approach became possi-
ble. Instead of receiving a generic interrupt event and determining the cause by reading
registers containing the device state, certain interrupt events can now be directly routed to
the respective handler without the need for expensive I/O read operations. Drivers that are
designed this way could then also benefit from the I/O thread approach.

3.2.2 CPU Assignment / Co-Location

Another aspect of a virtual machine using an I/O thread is the characteristics of resources
assigned to it. While in the traditional approach the assignment of virtual to physical CPUs
can be realized one-to-one, the I/O thread needs additional resources of its own. In order
to provide a minimal latency, it should be run on a dedicated I/O core without interfering
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with virtual CPUs. Otherwise, a vCPU could be delayed by an entire timeslice in the worst
case, which has to be avoided. However, this results in a different resource assignment.
A virtual machine with the same number of vCPUs requires one additional physical core
compared to the original case. Furthermore, if all n available physical cores should be used,
the virtual machine would only have n− 1 virtual cores at its disposal.

This factor has to be considered when planning a virtual SMP system using an I/O
thread. When tackling scheduling issues of multiple virtual machines as mentioned in
Section 2.2.3, this approach will add another vector to the problem, because now not only
the vCPUs, but also the I/O threads have to be regarded. Within the scope of this thesis, the
I/O thread is assigned to a dedicated core, while the virtual CPUs are distributed among
the remaining ones.

While it is a comparably simple solution, the scalability of the I/O thread heavily de-
pends on the workload characteristics. Predominantly synchronous requests decrease the
performance and even in the asynchronous case, parallelism is not exploited at maximum
level. All events are still handled sequentially, even when they would not interfere with
each other.

3.3 I/O Handling in Initiator Context

Linux

Libraries (pthreads)

Testing Environment

Log Test Program

Device Model
Message Handlers

Figure 3.5: Design of synthetic testing environment

A solution which enables harnessing available parallelism more effectively can be found
when threads handle their own requests. Rather than serializing them using a global lock,
device models could be built in a thread-safe way by using atomic operations and fine-
grained locking. In essence, only the critical sections have to be protected against thread
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Parameter Value

compile time 470s
exits 867341
average exit cycles 2301
CPU frequency 2.67 GHz
synchronous messages 759141
thereof in vCPU subsystem 728509
asynchronous messages 446213
thereof in vCPU subsystem 317191

Table 3.1: Characteristic numbers of single-core kernel compile

interference caused by parallel access. All non-conflicting paths can be executed in parallel.
However, the major downside of this approach is the complexity. It is necessary to identify
and correctly protect any critical code sections. While atomic operations can be integrated
seamlessly, introducing fine-grained locking to the device models is likely to increase code
complexity. Although the VMM design principle of message-passing function calls described
in Section 2.1.3.2 allows for locking on the API level, it also has to be ensured that nested
calls never lead to deadlocks, e.g. by releasing locks before sending a nested message.

The improved parallelism that can be achieved with this solution is attended by a high
complexity. Even with extensive synthetic testing, hidden errors could manifest themselves
only on certain machines under rare conditions. While the I/O thread is safe as per design,
the fine-grained locking is difficult to verify and test.

3.3.1 Synthetic Testing Environment

In order to find and correctly protect critical sections in device models, I decided to create a
simplified test environment. By using an isolated test program separated from the runtime
environment and the hypervisor, it is possible to create targeted test scenarios restricted to
the minimum of components around the device to be tested. Figure 3.5 on the preceding
page shows how the message-passing API of the device models provided by the VMM is
stress-tested in a controlled environment, while maintaining a log of the course of events
in both the device and the test program. In the event of an observed failure, the log can be
inspected to find the exact interleaving of code execution which caused the problem. Using
long-running tests of the corrected version the modifications can then be verified.

3.4 Hybrid I/O Thread

Because the fine-grained approach is complex and difficult to maintain, having an encap-
sulated synchronization mechanism would be the desired solution. However, using basic
characteristics of an example workload, it can be shown that the full I/O thread mechanism
has severe performance impacts. During a Linux kernel compile benchmark, the main de-
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termining factors are the frequency of VM exits and their handler execution time. Table 3.1
on the preceding page shows numbers extracted from the original NOVA publication [28].
The amount and properties of messages the I/O thread has to process (i.e., if they are syn-
chronous or asynchronous and if they are related to the vCPU subsystem) were collected
during a sample kernel compile run of the original I/O thread approach. As the intended
use of these numbers was only to determine relative ratios, absolute numbers did not mat-
ter and the fact that they were determined using a different setup is not of importance.
Using the VM exit statistics shown in Figure 3.6, it is possible to predict the slowdown of
the I/O thread depending on the ratio of synchronous to asynchronous messages.

exits per second=
exits

compile time
=

867341

470
= 1845.4

exit handling per CPU= exits per second ·
average exit cycles

CPU frequency
= 0.159%

Figure 3.6: Exit handling statistics of a kernel compile

To derive the projected speedup of the I/O thread for a given number of cores, the parallel
fraction of Amdahl’s Law is determined by the original parallel fraction of the algorithm,
reduced by the amount of serialization caused by the synchronization mechanism. The
model multiplies the exit frequency by the number of cores to determine the load on the
I/O thread caused by VM exits. Although this might not be entirely the case in real setups,
it is still expected to provide a reasonable estimate. By running a pilot benchmark under
native Linux, the base parallel fraction of P = 97.5% could be deduced for a kernel compile.
Figure 3.7 shows the calculation of the theoretical estimate for the maximum speedup of
the I/O thread compared to native Linux.

exit handling= exit handling per CPU ·# of CPUs= 0.159% · 16 = 2.54%

synchronous percentage=
synchronous messages

total messages
=

759141

759141+ 446213
= 62.98%

parallel fraction= P · (1− (exit handling · synchronous percentage))

I/O thread S(16) =
1

(1− P) + P
N

=
1

(1− 95.94) + 95.94
16

= 9.94

native S(16) =
1

(1− 97.5) + 97.5
16

= 11.64

performance loss= 1−
I/O thread speedup

native speedup
= 1−

9.94

11.64
= 14.6%

Figure 3.7: Speedup calculation for 16 CPUs using parallel fraction
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Solution Pros Cons

Fine-grained Best scalability Complexity
No incremental deployment
Error-prone

Full I/O Thread Simplicity Performance issues
Robustness More complex scheduling

Fewer vCPUs
Hybrid I/O Thread Performance More complex scheduling

Flexibility Complexity (partly)
Incremental deployment Error-prone (partly)

Table 3.2: Pros and cons of the different solutions

As Figure 3.7 on the preceding page shows, the performance impact of the full I/O thread
approach is significant. Mainly caused by the high percentage of synchronous messages,
the achievable speedup is estimated to be located between native and global lock results.
To assess the potential of optimizations, I used the parameters listed in Table 3.1 on page 19
to predict the improvement enabled by a lower percentage of synchronous messages. If it
were possible to leave out the entire vCPU subsystem1, the synchronous portion would drop
to 759141−728509

759141+446213
= 2.54%. In an analogous calculation using Amdahl’s Law, the parallel

fraction would increase to 97.44%, allowing for S(16) = 11.64.

Given the high potential for performance improvement by excluding devices or subsys-
tems from the I/O thread, it is reasonable to choose the design of it with this mechanism in
mind. Code paths bypassing the I/O thread correspond to the fine-grained approach and
hence have to be synchronized explicitly.

This solution of combining both approaches would mean to use a dedicated I/O thread
design which is capable of leaving certain devices or code paths to be executed by the ini-
tiating thread. The underlying principle is comparable to the one used in similar scenarios
like KVM, where performance-critical code paths are executed directly in the kernel, pro-
tected by fine-grained locks, while the rest is handled by qemu’s I/O thread infrastructure.

A perfect example to illustrate this concept is the ACPI2 Power Management Timer (ACPI
PM). The device model integrated into the VMM merely acts as an up counter with a fixed
frequency of ~3.58 MHz, using the host TSC as timebase. Being read-only, it does not
need to be synchronized at all. With a carefully designed hybrid I/O thread, it can simply
be excluded from the queue and handled directly by the virtual CPU instead, as shown in
Figure 3.8 on page 23. Analogously, thread-safe device models or even entire subsystems
can be configured to bypass the I/O thread. This way, the fine-grained solution could be
implemented incrementally, taking out entities which do not need synchronization by the

1 For simplicity reasons, excluded messages are counted as asynchronous requests.
2 Advanced Configuration and Power Interface
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I/O thread one by one. The major advantage of the hybrid model is that it is safe from
the beginning and is expected to allow for higher scalability even in the basic version.
Furthermore, it encapsulates most code complexity in one piece of new software, rather
than modifying all the existing code.

3.5 Summary

In this chapter, I described the possible solutions for improving the virtual SMP perfor-
mance. The advantages and disadvantages of the three approaches are listed in Table 3.2
on the preceding page. While the full I/O thread is still expected to show performance
issues and a purely fine-grained locking scheme is very complex and has to be deployed
all at once, I chose the hybrid approach as the best compromise in between. This way, the
complexity and extensive testing can be kept to a minimum, incrementelly applied only
where the scalability depends on it.

In the following Chapter 4, I will describe the resulting implementation of the hybrid
I/O thread solution in the existing VMM environment in greater detail. Complexity and
particular problems when configuring specific devices for bypass are also covered.
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As laid out in Chapter 3, after distributing the vCPU threads among multiple physical cores,
the globally serializing semaphore has to be replaced by a more sophisticated mechanism
in order to allow for maximum scalability. The chosen solution of a hybrid I/O thread
approach could be implemented incrementally. In this chapter, I will point out the most
challenging aspects of implementing SMP support for a virtualized guest operating system.
After a short recapitulation of the basic SMP implementation I will describe specifics of the
I/O thread in greater detail. Afterwards, a detailed demonstration of the hybrid bypassing
capabilities using the example of the PIC subsystem will reveal both the flexibility of the
I/O thread and the complexity of the fine-grained locking approach.

4.1 CPU Assignment

The current version of the Vancouver VMM supports multiple virtual CPUs for guest op-
erating systems. Each virtual CPU is represented by a dedicated vCPU thread. It is up
to the user-level environment to distribute these threads among one ore more physical
CPUs (pCPUs). At the time I started this thesis, there existed two such environments with
SMP support, the NOVA UserLand (NUL) and NOVA Runtime Environment (NRE). Because
Vancouver was extracted from NUL recently into a standalone component called Seoul and
only NRE has already been migrated to use this new version, I focused on NRE for the
course of this project.

However, currently both NUL and NRE use different physical cores only for entire in-
stances of Vancouver (i.e., VMs). Within one instance, all vCPU threads are assigned to the
same core. This limitation effectively results in a proof-of-concept implementation. The
performance of VMs with more than one vCPU on the same physical core is expected to be
worse than with only one vCPU, because the guest operating system will schedule timer and
scheduling interrupts to all the virtual processors, deploy synchronization mechanisms and
distribute work among them even though the theoretical maximum of CPU performance is
still only that of one single physical processor.

Fortunately, this limitation can be easily removed by two simple changes to the glue
code connecting the Vancouver VMM to the rest of the userland. These changes consist of
assigning vCPU threads to different physical CPUs and ensure that every vCPU thread is
able to receive timer messages from the host system. For simplicity, I decided to use one so
called Timer Session per pCPU, because it was the least intrusive change and the focus of
this thesis is the VMM itself, not the software components around it.

25



4 Implementation

4.2 Dedicated I/O Thread and Posted Writes

Leaving the existing codebase largely untouched was one of the main goals behind the I/O
thread implementation. Therefore, I decided to directly hook into the DBus1 (DeviceBus)
infrastructure which connects host services and device models to a virtual motherboard as
described in 2.1.3. By adding a new message type called MessageIOThread and modifying
the send methods of the DBus class, I equipped the bus system with two callbacks:

• The enqueue callback, if installed, calls the enqueue operation for the respective mes-
sage, provided by I/O thread. The I/O thread then marshals all essential information
into an instance of MessageIOThread and enqueues it for future handling. It also uses
the message type and specific information to determine whether or not to block the
sender until the message has been processed.

• The claim callback can be used by device models or handlers to indicate that the
message should not be enqueued but rather handled directly by the initiator.

In the object of type MessageIOThread, messages are encoded in a structure as illustrated
by Listing 4.1.

Listing 4.1: Layout of MessageIOThread structure
1 struct MessageIOThread
2 {
3 /* ... queue - specific element members ... */
4 enum Type {
5 /* ... event types ... */
6 } type;
7 enum Mode {
8 MODE_NORMAL , // standard LIFO delivery
9 MODE_EARLYOUT , // stop delivery after one receiver

10 MODE_FIFO , // FIFO delivery
11 MODE_RR // round - robin delivery
12 } mode;
13 enum Sync {
14 SYNC_SYNC ,
15 SYNC_ASYNC
16 } sync;
17 /* ... additional fields ... */
18 void *ptr; // pointer to original message
19 void *sem; // pointer to synchronize object ( semaphore )
20
21 /* ... constructors ... */
22 }

Messages on the bus are marshalled into such a MessageIOThread as a pointer to the original
message, together with environmental information, such as the event type, send mode
(e.g., FIFO, round-robin, etc.), ability for being sent asynchronously and a pointer to an
object providing the synchronization mechanism for synchronous messages. The default
send function now works according to the pseudocode shown in Listing 4.2.

1 Not to be confused with D-Bus, part of the freedesktop.org project.

26



4.2 Dedicated I/O Thread and Posted Writes

Listing 4.2: Send function calling enqueue callback
1 template <class M>
2 class DBus
3 {
4 /* ... */
5
6 /**
7 * Send message LIFO asynchronously .
8 */
9 bool send(M &msg , bool earlyout = false )

10 {
11 if ( iothread callbacks present ) {
12 /* execute all registered callbacks */
13 }
14 if (no callback succeeded and enqueue callback present ) {
15 /* enqueue message */
16 }
17 /* ... original send code ... */
18 }
19
20 }

Other send functions (e.g., the FIFO or the round-robin version) are implemented anal-
ogously using the appropriate flags. To enable the I/O thread to use the same bus
infrastructure for actually sending the requests, I added another function called send_di-
rect, which encapsulates the original send functionality, including FIFO and round-robin.
The respective callbacks can be configured using two newly added functions of the DBus
object: set_iothread_enqueue and add_iothread_callback. Picking up the example of the
ACPI PM Timer mentioned in Section 3.4, I will now describe the entire workflow for both
the original and the hybrid bypass scenario.

The situation is initiated by the guest operating system issuing an I/O read instruction
(INL) to read a 32-bit value from the PMTimer port (usually port 0x8000). This causes a
VM exit, passing control to the I/O handler of the VMM. This handler in turn tries to send
a message of type MessageIOIn on the bus, where the device model would then receive the
message and reply to it. Using the I/O thread, the flow would present as demonstrated
by an exemplified code section in Listing 4.3. However, if the PM Timer registers a claim
callback at the bus, the entire enqueue mechanism will be skipped and the vCPU executes
the receive handler of the device model itself.

In the asynchronous case, the client is not blocked but rather returns immediately. Usually,
the message then gets destroyed, so the I/O thread has to operate on a local copy. Other
than that, the process is exactly the same as in the synchronous case. However, one impor-
tant aspect mentioned in Section 3.2.1 is the ordering of requests. While device accesses
are serialized as in the PCI root complex (i.e., the I/O thread guarantees that read requests
always read the latest data), access to guest memory can pose a challenge. If for example
the write instruction results from instruction emulation, but the subsequent read request
is executed natively, the assumption of the guest that the write request has completed is
wrong. Consequently, access to guest memory is always excluded from the I/O thread. As
there is no need for additional synchronization in these accesses, no special precautions
have to be taken.

27



4 Implementation

Another special case has to be handled when a message handler itself sends another
message on the bus. Obviously, the I/O thread must not enqueue its own messages. To
prevent this, the enqueue function features a simple detection and returns false, so the
original send code path in DBus is used.

Listing 4.3: Accessing the PM Timer through the I/O thread
1 /* vCPU exit handler : */
2 MessageIOIn msg( MessageIOIn :: TYPE_INL , 0 x8000 );
3 bus_ioin .send(msg);
4 /* send method redirects to following enqueue */
5 bool IOThread :: enqueue ( MessageIOIn &msg ,
6 MessageIOThread :: Mode mode ,
7 MessageIOThread :: Sync sync ,
8 unsigned * value ) {
9 /* ... check for self - enqueueing ... */

10 // I/O port reads are always sync
11 sync = MessageIOThread :: SYNC_SYNC ;
12 MessageIOThread *enq = new MessageIOThread (
13 MessageIOThread :: TYPE_IOIN ,
14 mode , sync , value , &msg);
15 /* configure for synchronous ( semaphore ) */
16 syncify_message (enq);
17 this ->enq(enq);
18 /* sync_message will block until finished */
19 sync_message < MessageIOIn >(enq , &msg , sizeof (msg), sync);
20
21 return true;
22 }
23
24 /* I/O thread : */
25 MessageIOThread *msg = queue .pop ();
26 MessageIOThread :: Sync sync = msg ->sync;
27 MessageIOThread :: Type type = msg ->type;
28
29 switch (type) {
30 /* ... */
31 case MessageIOThread :: TYPE_IOIN :
32 {
33 MessageIOIn *msg2 =
34 reinterpret_cast < MessageIOIn *>(msg ->ptr);
35 /* access device model */
36 bus_ioin . send_direct (* msg2 ,
37 msg ->mode , msg -> value );
38 /* wake enqueuer */
39 sync_msg < MessageIOIn >( msg);
40 }
41 break ;
42 /* ... */
43 }

For the correct operation of the I/O thread the specifics of the queue itself are not of im-
portance. During the work on this project, I used both a simple list guarded by a lock and
a more sophisticated lock-free queue interchangeably. Obviously, to replace the original
global lock by another globally serializing lock is not the most promising approach with
respect to performance. However, as the critical section now consists solely of the enqueue
and dequeue operation rather than the entire device handling, the performance impact of
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a lock-free queue implementation is not as noticeable as expected, as can be seen later in
Section 5.3.1.

4.3 Testing Environment / Stress Testing

As explained in Section 3.4, certain device models shall be configured to bypass the
I/O thread. Before this is possible, the affected models have to be made thread-safe by
for example the use of fine-grained locking. To simplify this process and to provide for
reliable and reproducible results, I decided to use a testing environment described in
Section 3.3.1. It consists of a simple, stand-alone test program which is linked against the
device model or subsystem under test. By implementing all receive handlers for messages
sent from within the device and attaching to the motherboard provided by the program
and passed to the device model, the program can effectively act as the VMM around it
without having to incorporate the entire complexity. Furthermore, the synthetic test does
not necessarily have to re-implement the complete functionality of components attached
to the device, but only has to mimic the basic behavior it expects on its message passing API.

Listing 4.4 shows example code from the program used to test the PIC model, simu-
lating highly concurrent load on two of its interrupt pins. Instances of the trigger_fn
function send a fixed number of IRQ messages to the PIC as fast as possible, while the
receiver_fn mimics a virtual CPU receiving the resulting interrupt signals. If not all of the
IRQs sent by the trigger functions are received by the emulated vCPU, a race condition in
the PIC led to inconsistencies and needs to be avoided, as described later in Section 4.4.1.
The log created by the logger.log calls can be used to determine the course of events that
caused the problem and help identify the critical section.

Using this environment, I was able to detect critical sections in the vCPU and inter-
rupt subsystem, install the respective synchronization primitives and test their correctness
in a systematic and incremental way. In the following section, I will describe in detail what
race conditions occurred and what changes were necessary to solve them.

Listing 4.4: Example code of the synthetic PIC test program
1 template <unsigned char IRQ >
2 static void * trigger_fn (void *) {
3 logger .log( LOG_INIT );
4 /* ... */
5 while (sent < IRQ_COUNT ) {
6 /* ... wait for re - raise condition ... */
7 logger .log(LOG_SEND , IRQS[IRQ -1]);
8 mb. bus_irqlines .send(msg);
9 sent ++;

10 }
11 return nullptr ;
12 }
13
14 static void * receiver_fn (void *) {
15 while (true) {
16 if (! __sync_fetch_and_and (& intr , 0)) {
17 /* ... exit condition ... */
18 continue ;
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19 }
20
21 logger .log( LOG_INTA_TX , check . value );
22 MessageLegacy inta( MessageLegacy :: INTA , 0);
23 waitcount = 0;
24 mb. bus_legacy .send(inta);
25 logger .log( LOG_INTA_RX , inta. value );
26
27 if (inta. value == IRQS [0]) irq_received_1 ++;
28 if (inta. value == IRQS [1]) irq_received_2 ++;
29
30 eoi(inta. value );
31 logger .log(LOG_EOI , inta. value );
32 }
33 }
34
35 /* message handlers */
36 static bool receive ( Device *, MessageLegacy &msg) {
37 /* ... set or clear virtual INTR pin ... */
38 }
39 static bool receive ( Device *, MessageIrqNotify &msg) {
40 logger .log( LOG_NOTIFY , msg. baseirq << 8 | msg.mask);
41 /* ... set re - raise condition for IRQ ... */
42 }

4.4 I/O Handling in Initiator Context

With the hybrid I/O thread mechanism in place, certain devices can be configured to bypass
the queue and be handled by the vCPU or service thread itself. As a consequence, those
devices have to be thread-safe.

A prominent example to illustrate the fundamental difference between device models
and real hardware mentioned in 2.1.4 is an interrupt controller like the PIC or the Local
APIC. Firstly, the device model implements the prioritizing in software while the real chip
features hard-wired pins that are asserted immediately. Secondly, and this in fact extends
the first point, it receives the signal for the next timer interrupt to be delivered not from a
piece of hardware (e.g., an oscillator or an external device) asserting a PIN, but through
a timer notification from the host system. This message is typically received and handled
by a dedicated timer thread of the VMM. Now if for example the guest tries to reconfig-
ure the PIC and at the same time a virtual timer interrupt has to be asserted, the two
threads execute code in the PIC model concurrently, which can lead to race conditions.
In hardware, asserting, prioritizing and delivering happens atomically within one clock
cycle. Conversely, the software emulation can take several hundred cycles for the same
event, which is why synchronization is necessary to avoid inconsistencies in the device state.

Because situations like the one mentioned above can happen in a virtual environment,
it is only possible to remove the global lock or the protection provided by the I/O thread
when at the same time any of such dependencies are identified and all guarantees retained.

In general, there are two alternatives to protect affected sections: Fine-grained locking
of the critical sections directly in the device models, or performing state updates using
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atomic operations (e.g., atomic and/or, compare and exchange). Conceptually, an atomic
operation is an update of a memory location where the hardware guarantees that the result
is the same as when the update were protected by a lock. These operations are basically
the finest-grained locking mechanism available. They allow for the shortest critical sections
and thereby bear the highest potential for parallelism, but are often more complicated to
use to protect larger objects like a device state. The more complicated the entity to be
protected gets, the more difficult or even inefficient it gets to use atomic operations. In
some cases they are even not sufficient at all.

In the following subsections I will present synchronization issues using the example of
two device models, the approaches I used to solve them and explain why and how I
implemented them.

4.4.1 Example: Race Conditions in the PIC Model and Their Solutions

The virtual PIC is a simple device model. It basically consists of three eight bit wide
registers: The Interrupt Request Register (IRR), Interrupt Service Register (ISR) and Inter-
rupt Mask Register (IMR). Furthermore it implements virtual IRQ pins for eight interrupts
(vectors 0-7), prioritizing logic and a notification mechanism to signal an IRQ to the vCPU.
To simulate level triggered interrupts, the model uses one more eight bit wide register to
notify other device models that an IRQ has been acknowledged and can be raised again. A
notification is sent if the respective bit is set in the notify field and cleared in the IRR. The
rest of the functionality (special mode settings, cascading) is not covered in this section. A
detailed description of the PIC can be found in the specification [7].

When a thread (e.g., the timer thread or another device interrupt) signals an IRQ, it
sets the bit in the IRR corresponding to the interrupt vector and runs the prioritizing
algorithm. The vector with the highest priority whose bit in the IMR is not set and where
no higher priority interrupt is currently being served is the result of this computation. If
there is such a vector, the thread notifies the vCPU that there is an interrupt pending. The
vCPU then issues a so called INT ACK cycle, where the respective bit is transferred from the
IRR to the ISR and the vector is returned. After handling the interrupt, the guest will issue
an End Of Interrupt (EOI), which clears the bit in the ISR and in turn runs the prioritization
and notifies the vCPU whether or not there is another interrupt pending.

As already explained in Section 4.4, the virtual PIC is subject to concurrent accesses
from the signalling thread and the virtual CPU thread. One possible situation is that the
guest performs an EOI while another thread delivers the signal in form of an IRQ. Both
actions trigger a prioritize cycle and perform state updates that are not atomic. The inter-
leaving execution of these two operations cause two race conditions which I had to prevent
as described in the following sections.
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Trigger Thread Receiver Thread
Set IRR
Prioritize (result: INTR)
Send INTR

INT ACK
Clear INTR
Send EOI: Clear ISR

Set IRR
Prioritize (result: INTR)

Send EOI: Prioritize (result: INTR)
Send INTR
INT ACK
Clear INTR
Send EOI: Clear ISR
Send EOI: Prioritize (result: no IRQ)

Send INTR
INT ACK (result: spurious interrupt)

Table 4.1: Sequence of events leading to a spurious interrupt in the PIC

4.4.1.1 Delayed INTR and DEASS Messages

The first issue can be reduced to the simple fact that between prioritizing and performing
the respective state update can be an arbitrary delay due to preemption. Both signalling an
IRQ and performing an EOI trigger the prioritize algorithm and in case an IRQ is pending
send an INTR message to the vCPU. Now if the interleaved accesses happen in a particular
sequence as listed in Table 4.1, the vCPU receives an INTR message when no interrupt is
pending anymore. This occurs when the guest performs an EOI exactly at the time where
the signalling thread has calculated the highest priority vector and would send an INTR
message to the vCPU next. But before this message, the vCPU thread completes the EOI,
recognizes the pending interrupt itself, and handles it completely (INT ACK and EOI). The
outstanding INTR message is then obsolete and leads to a so-called spurious interrupt in
the PIC. That is, an interrupt was signalled to the vCPU, but the INT ACK cycle does not
return a valid vector. A very similar course of events can lead to an outdated message
clearing the INTR state (DEASS).

The simplest solution to avoid this problem is to modify the public interface of the
PIC model such that a lock serializes all PIC accesses. This ensures that prioritizing and
notifying are done atomically. However, the parallelism would suffer because for example
a vCPU thread would have to wait for other threads to release the lock until it can perform
an EOI. Furthermore, many operations within the PIC are already atomic or could be very
easily modified. For instance, the state updates to the IRR and ISR can be done using
atomic AND and OR operations. The prioritizing function can also be used concurrently,
only the state updates to the vCPU have to be taken care of.
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Analysis of this problem showed that there is no way to avoid the described race con-
dition other than using a coarse-grained lock in the PIC preserving the original concept.
The only other solution is to modify the vCPU such that it can cope with spurious interrupts
and implement a so called pull model. Effectively, the INTR message of the PIC only acts
as hint that the PIC needs a state update. When such a message is received, a sanity check
is performed by prioritizing in the context of the vCPU. Only if this sanity check does not
yield a valid interrupt, the INTR state is cleared. This also solves the problem that outdated
DEASS messages would cause lost interrupts.

Although this creates additional overhead (the prioritize function is called twice every
time), it allows for a high degree of parallelism within the device model. Because the fre-
quency of such spurious interrupts is low (a kernel compile on eight virtual CPUs showed
an overhead of 0.03 %, which lies in the range of measuring inaccuracies), the additional
overhead caused by unnecessary recalls can be neglected.

4.4.1.2 Notify Mechanism

Another issue regarding concurrent state updates in the PIC was the notify mechanism used
for level-triggered interrupts, e.g. for PCI devices. Another use case is to relieve interrupt
load on devices like the PIT. By programming a new timeout only when the previous
interrupt was seen by the guest, a timer device can be effectively limited in the interrupt
load it can generate to match the handling speed of the guest.

However, because the notification is sent from within the prioritize function and both
the IRR and the notify field have to be evaluated to determine if there are notifications
pending, messages could be sent incorrectly or multiple times. If the triggering thread up-
dates the notify field and afterwards the IRR, a concurrent prioritize could already send the
message and clear the notify flag. The notification would be incorrect and could cause an
immediate new interrupt request to be dropped and the signaller would never be notified
again.

Reversing the order can avoid incorrect notifications, but the message could still be
sent multiple times. Basically, the accesses to the IRR and the notify field have to be atomic.
The notifier has to check which bits are different in the two values and clear those bits in
the notify field. Because atomic operations only work on single memory locations, they
are not sufficient here. I had to restructure the mechanism such that instead of sending
notifications in every prioritize call it specifically notifies when an EOI command is being
handled. This way, the bit in the IRR is already known and can be atomically cleared in the
notify field. By checking the value of the field before the update, which is returned by the
atomic operation, the notification can be sent if necessary.

The only other way would be to consolidate the four eight bit values into one 32 bit
wide register that can be updated atomically. But since the notification then becomes a
read-modify-write operation, the logic to implement the desired behavior would be compli-
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cated and not wait-free. That is, it would have to use compare and exchange in a loop until
it performed a consistent update. Therefore I decided to use the simpler wait-free solution,
although it possibly sends more notifications. The potential overhead is acceptable because
these notifications are only used for legacy components (i.e., the PIT and legacy PCI in-
terrupts, which are increasingly superseded by MSI and MSI-X). Both the PIT and legacy
level-triggered interrupts are not concerned with respect to multiprocessor scalability and
therefore I took no special precautions in this regard.

4.4.2 Local APIC

The existing implementation of the Local APIC device model was susceptible to corruption
through concurrent access to the timer functionality, if not protected by the global lock.
Triggering timer interrupts was integrated into the get_ccr function responsible for provid-
ing the caller with the virtualized Current Count Register (CCR) value. The rationale behind
this decision was to trigger interrupts as early as possible: When an interrupt is found to be
due while calculating the current count value, it is raised directly rather than waiting for
the host service to notify the device model.

However, this code path is hence being accessed by both the host timer service and
the virtual CPU, which can potentially happen concurrently. As atomic operations did
not suffice in this case and a locking mechanism within the device is more complex and
expected to lead to performance degradation, I chose to modify the mechanism such that
virtual timer interrupts are triggered only by the host service and get_ccr is called only by
guest code execution.

The only disadvantage of this approach is that virtualization artifacts may become vis-
ible. Because virtual timer interrupts are always delivered with a slight delay caused
by the host service notification, guest code could read a counter value which indicates
an elapsed timeout while the actual interrupt has not yet arrived. However, this is not
explicitly precluded in the specification (“After the timer reaches zero, an timer interrupt
is generated [17, p. 10-17]”). Furthermore, guest software could discover such artifacts
already because time virtualization is a complex topic [32].

Because the local APIC could be assisted by hardware extensions in the future, this is-
sue is ignored in my implementation. Although hardware-assisted APIC virtualization
could reduce overhead and complexity, it is not considered mainly because of the need
for support in the microhypervisor. The focus of this project was to enable efficient SMP
support in the user-level VMM without having to modify the underlying microkernel
solution.
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4.5 Summary

In this chapter, I described how the implementation of virtual SMP support in Vancouver
was modified to support multiple physical cores. After illustrating the I/O thread message
queueing mechanism, I presented the testing environment used for identifying and eliminat-
ing race conditions in unprotected device emulation code. By resolving the specific issues
as described in Section 4.4, I showed how the hybrid approach could be enabled for the
vCPU and interrupt controller subsystem. In the next chapter, I will evaluate the different
stages of the SMP implementation with respect to scalability and overall performance.
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Assessing multicore performance is usually done using tailored benchmarks revealing scal-
ability achieved by distributing work among CPUs. The nature of these benchmarks ranges
from pure arithmetic computation to more realistic workloads like compile jobs or even
I/O-intensive software using network or disk.

In virtualized systems, the impact that is most noticeable is the handling of VM exits.
Workloads that primarily do calculation without causing considerable amounts of virtu-
alization overhead will not be able to reveal possible scalability inhibitors. As number
crunching is thus not very challenging from VMM perspective, I focused my evaluation on
workloads involving a higher number of VM exits in different varieties. One prominent
scalability benchmark in this area is to compile a Linux kernel in a ramdisk, because it uti-
lizes SMP very well while still causing a relevant amount of exit handling due to interrupts
and timer programming. It is expected that this workload will reveal performance issues in
the vCPU and interrupt device models and will be a perfect match to evaluate the hybrid
I/O thread approach.

Because compiling a kernel is still considered to be a CPU-intensive workload, I also
conducted I/O-intensive experiments for examining network and disk performance. I
used the widely established network benchmark netperf [6] to measure inter-VM network
throughput and ran kernel compile benchmarks on a virtual disk for I/O device model
involvement. As opposed to the scalability focus of the ramdisk kernel build, this class
of experiments has an intrinsically serializing I/O component and therefore targets the
overall synchronization overhead of the virtual SMP solutions, which is not expected to
vary significantly with the number of vCPUs.

For evaluation I used three machines listed in Table 5.1 on the following page, serving
separate purposes. System A is a server that provides a high number of cores and therefore
suits the kernel compile benchmark perfectly. On the other hand, System B is a commodity
desktop computer with the possibility to use peripheral I/O devices (e.g., disk, network)
for measuring the overall overhead and I/O performance. For heavy I/O utilization, System
C features a 10 GBit NIC and a relatively high number of cores, which can be used to
assess parallel I/O performance. To create load on the test machines for performing the
I/O benchmarks, I used two load generators as shown in Table 5.1 on the next page.
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System A System B System C

CPU name Xeon (Nehalem) Xeon (Haswell) Xeon (Westmere EP)
CPU frequency 2.261 GHz 3.5 GHz 2.67 GHz
Number of cores 32 4 12
Number of sockets 4 1 2
Hyper-Threading yes yes inactive
RAM 128 GiB 16 GiB 32 GiB
Peripheral devices none SATA SSD Intel 82599EB 10 GBit

Intel I210 1 GBit

Table 5.1: Test systems technical specification

System L1 System L2

CPU name Core i5 (IvyBridge) Core i7 (Nehalem)
CPU frequency 2.8 GHz 2.8 GHz
Number of cores 2 4
Number of sockets 1 1
Hyper-Threading yes inactive
RAM 4 GiB 2 GiB
Peripheral devices Intel 82579LM 1 GBit Intel 82599EB 10 GBit

Table 5.2: Load generators technical specification
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5.1 Benchmarks Comparing I/O Thread and Fine-Grained
Locking

To evaluate the improvement of the approaches implemented during this thesis to the ex-
isting solution and native performance, I ran a Linux kernel compile in both a ramdisk and
a virtual SATA drive as well as inter-VM network throughput measurements using netperf.
The solutions involved (global lock, fine-grained locking, full and hybrid I/O thread) are
compared with respect to scalability and overall overhead. Qualitatively, fine-grained lock-
ing is expected to be the fastest, while the global lock will have severe performance deficits.
The full I/O thread would rank between both, leaving the hybrid approach to match the
fine-grained one as close as possible. The overall goal is to achieve near-native performance
with the most elegant solution.

5.1.1 Kernel Compile in a Ramdisk
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Figure 5.1: Speedup comparison of the different synchronization mechanisms

The experiment was undertaken on System A, in a VM with up to 32 (31 when using an
I/O thread) cores and 2 GiB of RAM. An additional data point was added by activating
Hyper-Threading [23] and thereby allowing for 64 and 63 vCPUs, respectively. Figure 5.1
shows the speedup achieved by the given number of cores (error bars indicate the minimum
and maximum, respectively). Matching the expectation, the fine-grained synchronization
achieves near-native performance throughout the range of available vCPUs, while the global
lock significantly impedes scalability. The anticipated impact of a full I/O thread implemen-
tation can be clearly seen in the performance gap to the other solutions. Interestingly,
the variability of results is considerably higher for the full I/O thread, which is caused by
varying contention on the queue, leading to for instance delayed inter-processor interrupts
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(IPI). The results also show that the hybrid version where the vCPU and interrupt controller
subsystem is bypassing the I/O thread can keep up with the near-native speedups.

5.1.2 Workloads Involving I/O

In order to prove the holistic claim of the I/O thread solution, I also measured I/O-intensive
workloads to show performance of virtual disk and network device models superior to what
can be achieved by a global lock. These experiments were conducted on System B with
activated Hyper-Threading, providing for up to eight virtual CPUs. Figure 5.2 shows the
network throughput of two VMs running on the same host, using a virtual 82576vf network
device and a virtual network bridge to connect them. Again, the minimum and maximum
throughput is given by the error bars. The results of both a TCP STREAM and TCP MAERTS
test provided by netperf are compared for the I/O thread and the global lock.

The virtual SATA drive was tested by running a Linux kernel compile on eight virtual
CPUs, but instead of using a ramdisk, the SATA model connected to a virtual disk provided
by the runtime environment. Although this still leaves the data in RAM, the disk service
and the respective device emulation within the VMM are involved. Performance issues
caused by the synchronization mechanism to protect critical paths could by easily iden-
tified. Figure 5.3 compares the compile times of the three different solutions mentioned
earlier. Note that this graph includes results of seven and eight virtual CPUs for the global
lock and KVM. This is due to the fact that a VM with seven vCPUs and a dedicated I/O
thread does not exactly compare to either seven or eight cores synchronized by a global
lock. The dedicated I/O core cannot be regarded as a full computation core, because it can
be shared between the I/O threads of multiple VMs, as done for the network benchmark.
Neither can it be completely ignored, because a small portion of the work of a VM is done
in parallel on this core. To remain as fair as possible, both results are shown without clearly
defining one as the direct competitor of the I/O thread.

5.2 The Perfect Device Model

The I/O experiments evaluated so far did not incorporate heavily parallel I/O. Access to
the SATA drive is inherently serial and the current version of the virtual network bridge is
serialized by a global semaphore. To evaluate parallel I/O performance, I included another
setup where the virtual machine is stressed by parallel requests to a network adapter fea-
turing multiple send/receive queues. The VM was executed on System B and tested by load
generator L1. To measure the scalability characteristics of a concurrently accessed network
device model I decided to conduct a modeled experiment using pass-through NICs. By
forcing the VMM to emulate all Memory-mapped I/O (MMIO) accesses to device memory,
the setup acts like a perfect device model where device emulation code does not consume
CPU time. As virtual interrupts and device accesses are still being handled by the VMM, the
results can be used to qualitatively predict the performance of the respective synchroniza-
tion solutions. Network scalability is measured by running an increasing number of parallel
instances of netperf ’s TCP_RR test. Figure 5.4 shows the aggregated number of transactions
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per second achieved by the different solutions. The maximum achieved by native Linux is
depending on the load that L1 can generate.
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Figure 5.4: Scalability test of multi-queue networking

Because this experiment revealed a major disadvantage of the I/O thread, I decided to
run another benchmark involving parallel I/O. While throughput measurements on GBit
networks are not meaningful (achieving wire-speed is not an issue), with 10 GBit it becomes
interesting again. To ensure that the machines used for testing are not the bottleneck, I
used a third system (System C) with more cores and a more powerful load generator L2.
Both were equipped with a 10 GBit network adapter and the throughput was measured by
iperf. Figure 5.5 shows the compared throughput achieved by a varied number of parallel
connections. It can be seen that only native Linux and the fine-grained approach are able to
achieve and keep up wire-speed throughput by using two or more connections. Although
the hybrid I/O thread performs better than the global lock due to the bypassing parts of
the system, it still can not provide the available throughput.

5.3 I/O Thread Statistics

As pointed out in Section 3.4, the ratio of synchronous to asynchronous messages is an es-
sential key number for the performance of the I/O thread. To illustrate this, I extended the
example calculation for 16 CPUs to a basic scalability model of the I/O thread, producing a
projected speedup graph for any number of CPUs running a given workload. Equation (5.1)
on the facing page shows the formula for an estimated speedup with a given parallel frac-
tion function PI/O thread(N), which determines the parallel fraction according to the formula
shown in Figure 3.7. When the parallel fraction was increased by configuring certain sub-
systems for bypassing, Equation (5.2) on the next page can be used with the new Phybrid.
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Figure 5.5: Throughput comparison of iperf with 10 GBit NIC

Using the kernel compile example from Section 5.1.1, I could project an estimate of the
performance gain of the hybrid approach before even implementing it. Figure 5.6 shows
the result of this projection for the given workload characteristics of a kernel compile. Al-
though the simple nature of the model expectedly shows inaccuracies in the full I/O thread
speedup calculation, it clearly indicates an estimated speedup trend that can be used to
assess the effect of planned improvements. It therefore proved to be useful in the decision
to implement the fine-grained locking part in the vCPU and interrupt subsystem and to
integrate it into the hybrid I/O thread approach.

SI/O thread(N) =
1

(1− PI/O thread(N)) +
PI/O thread(N)

N

(5.1)

Shybrid (N) =
1

(1− Phybrid(N)) +
Phybrid(N)

N

(5.2)

5.3.1 Comparison of Queue Implementations

Although I expected the queue characteristics to be a key aspect of the achievable perfor-
mance with an I/O thread, the TCP_RR experiment revealed only a slight and unstable
advantage of the lock-free implementation over the locked queue as shown in Table 5.3.
The low difference and the outliers where the lock-free queue performed slightly worse
suggest that the two implementations form no difference with respect to scalability. During
the experiments, it became clear that most of the performance impact comes from the seri-
alizing behavior itself and the queue operations are almost negligible. In order to achieve
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maximum performance, highly concurrent accesses should be prevented from being queued
in the first place by means of the hybrid approach.

5.4 Performance of Multiple Virtual Machines

Although not specifically part of this thesis project, running multiple virtual machines on the
same host is an interesting use case that is to be considered. Especially for a fair evaluation
of the I/O thread, it is necessary to show if dedicated I/O cores can be shared among
VMs and if there is a performance impact. During my network experiments I discovered
that a shared I/O core significantly improves inter-VM network throughput as shown in

instances tps (locked) tps (lock-free) difference (percent)

1 6216.51 6322.41 +1.70
2 12271 12391.3 +0.98
4 23388.6 24288.1 +3.85
8 35052.9 36915.1 +5.31
16 49650.1 51496.2 +3.72
32 71972.1 71272.1 −0.98
64 106370 105234 −1.07
96 123803 124459 +0.53
128 133878 133559 −0.24

Table 5.3: TCP_RR performance comparison lock-free vs. locked queue
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Figure 5.7, most likely because of caching effects. On the other hand, unrelated VMs may
suffer slowdown effects when the CPU executing the I/O threads becomes fully utilized.
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Figure 5.7: Inter-VM network throughput comparison for shared and distinct I/O cores

Another aspect of multiple VMs is physical CPU sharing between vCPUs. If multiple virtual
cores are co-located on one physical core, scheduling becomes very challenging and is still
being actively researched, as mentioned in Section 2.2. The effect of one underlying prob-
lem commonly referred to as lock-holder preemption can be seen in a simple experiment: A
Linux kernel compile is executed in two VMs simultaneously. In the first version, both VMs
get three exclusive physical cores to execute on, in the second they share the same six ones.
From a pure mathematical point of view, the results should be the same, but in practice the
second version shows ~4-5% overhead.

Because the time frame of this thesis did not allow for further investigation and opti-
mization of these two aspects, they are just mentioned here for completeness, but could be
considered in future work on virtual SMP in NOVA.

5.5 Summary

The conducted experiments were able to confirm the expected performance issues when
scaling the global lock or the full I/O thread approach to a higher number of cores. Al-
though the I/O thread performs better than the global lock, the serializing characteristics
still impede maximum scalability. As predicted using a simple scalability model based on
Amdahl’s Law, the hybrid approach was able to significantly improve performance. How-
ever, the modeled experiment using a pass-through NIC clearly showed that even though
posted writes help to a certain degree, highly parallel accesses to device models can not be
handled by a serializing I/O thread without losing scalability.
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6 Future Work

While working on this project, I identified several opportunities to improve virtual SMP in
the NOVA virtualization architecture. The reason for why I did not incorporate them in this
thesis is the limited scope with regard to both time and software components. As I focused
on the SMP infrastructure within the user-level VMM, optimization involving hypervisor
modifications were not feasible.

In the following sections I will explain ideas which could be worked on in future projects
in order to improve certain aspects of multiprocessor support for virtual machines. Both
scalability and real-time aspects are covered.

6.1 Improving Synchronization of Virtual CPUs

The first vector of improvement is the synchronization of virtual CPU handling itself. In
Section 5.3, the performance model clearly indicated that the interrupt infrastructure is
one of the major scalability inhibitors when synchronized inefficiently. But also parallel I/O
has to be handled with as little serialization as possible to achieve maximum throughput,
as shown in Section 5.1.2 on the example of 10 GBit network. These are therefore very
promising components to inspect for optimization.

The local APIC together with the vCPU model is a central part of a multiprocessor sys-
tem due to frequent and concurrent access to its functionality. As already mentioned in
Section 4.4.2, there exist hardware mechanisms to reduce the number of VM exits caused
by APIC accesses. To leverage them already promised significant improvement in other
solutions like KVM [24]. Implementing support in both the hypervisor and the VMM could
be advantageous not only for performance, but also for code complexity, because part of
the APIC emulation and its synchronization could be dismissed.

Another interesting field of research is Transactional Memory [16], also arriving as hard-
ware extensions with recent processor generations. By grouping critical code sections into
transactions, hardware would execute them speculatively and only apply synchronization
in case of a conflict. A variety of software and hardware flavors have been researched [20],
but it has to be evaluated how the inherent overhead compares to conventional locking
schemes. From a programming point of view, code would become much more readable and
less error-prone, as critical sections only have to be identified and placed in a transaction
rather than spreading locks among conflicting components and ensuring correctness and
deadlock-freedom in the design.
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6 Future Work

With regard to the I/O thread, future projects could investigate a stronger focus on
the hybrid approach with more fine-grained locking in performance-critical device models.
Especially parallel networking suffers from throughput degradation due to the serializing
property of the I/O thread as shown in Figure 5.5. Using the scalability model described
in Figure 3.7, workloads adhering to Amdahl’s Law could be investigated with respect to
performance gain in the hybrid approach.

However, not only parallelism, but also congestion can be a problem with the I/O thread.
When the dedicated I/O core is fully utilized, serious delay and slowdown could be the
result. Implementing a fall-back to the global lock could help in this kind of situation, if the
I/O core is being shared with threads of other VMs or the runtime environment. Although
it would re-introduce the previous serialization behavior, it could avoid vCPUs waiting for
work unrelated to the VM. If it were possible to identify completely isolated subsystems in
the device emulation, it would be an interesting concept to distribute work among multiple
I/O threads. If no such subsystems exist, these threads have to be synchronized again, e.g.
by the use of fine-grained locking or transactional memory.

6.2 Scheduling Virtual CPUs of Multiple VMs

In the previous section, I already mentioned sharing of cores among different components
like the VMM and services of the runtime environment. But in a virtualization system used
for consolidating multiple machines into one large server, even a larger number of VMs
running concurrently is possible. Ideally, virtual machines would share physical cores in
such a way that both overall and individual performance are maximized. As explained in
Section 2.2.3, predominantly preempting lock holders poses a challenge in doing so.

There exist two techniques tackling the aforementioned problem:

• Co-Scheduling1 [25]: All vCPUs of a VM are only scheduled together.

• Pause-Loop Exiting: vCPUs waiting for a lock to be released get preempted in favor
of a different VM.

Both ideas have their advantages and disadvantages as well as different target usages.
Co-scheduling can be used to establish guaranteed execution time rather than the current
best-effort implementation. However, with VMs executing strongly asymmetric workloads
(i.e., not utilizing all of the vCPUs evenly), the achievable global utilization is not optimal.
On the other side of the spectrum, the system can be configured to schedule virtual CPUs
faithfully and taking care of the preemption problem directly. Pause-loop exiting aims at
detecting threads executing busy-waiting loops and preempting them, leaving the core free
for useful computation. This approach requires a higher level of scheduling intelligence
and is not suitable for reasoning about guarantees, but achieves a potentially higher global
utilization.

1 Also commonly referred to as Gang-Scheduling.
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6.2 Scheduling Virtual CPUs of Multiple VMs

Another aspect of scheduling in a consolidated system is the currently fixed assignment of
virtual to physical CPUs. In order to install intelligent mechanisms to improve performance
of utilization, it might become necessary to implement a dynamic assignment supporting
vCPU migration. This can be particularly useful in Non-Uniform Memory Access (NUMA)
environments where access latencies to main memory are not uniform across all CPU
sockets [33]. Virtual CPUs could then be migrated closer to the data they are using.

Lastly, the number of vCPUs per VM could be made dynamically reconfigurable to adapt
to the current global state of the system. The technique to enable this is called CPU hot
plugging and could be useful for performance, energy and even migration aspects, when
virtual multi-core machines could be migrated between machines with a differing amount
of physical CPUs.
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7 Conclusion And Outlook

This thesis described the journey from a proof-of-concept implementation of virtual mul-
tiprocessor support towards a scalable, efficient and yet maintainable solution. In the
implemented software components, I took into account that certain virtualized devices
have different underlying mechanisms than hardware and therefore need special treatment
in the case of parallel access, as described in Section 2.1.3. Furthermore, I incorporated
the trade-offs and challenges when implementing concurrently accessed device models. As
explained in Section 4.4, race conditions are possible in device models. To prevent them
while maintaining the best possible performance requires a deep understanding of the
behavior of real hardware and careful protection against data corruption.

With the focus being set to scalability and maintainability and the scope strictly lim-
ited to the user-level VMM, the result of this project provides a largely self-contained
component that enables safe access to device models. Assessment and following evaluation
of the impact of serializing parallel accesses clearly showed the need for sophisticated
synchronization mechanisms in highly contended components in order to achieve best per-
formance, which is why mechanisms for directed customization of critical subsystems were
integrated. Using the example of the vCPU and interrupt controller subsystem, I imple-
mented the hybrid approach involving minimal serialization. Combining the encapsulating
properties of the I/O thread and the performance gain of fine-grained locking, the hybrid
I/O thread is the solution providing the highest scalability while only modifying device
models that are performance-critical. Future extensions to the VMM (e.g., other device
models) can be easily integrated into the structure and be configured to bypass the I/O
thread on demand, when thread safety is provided by the device model itself. Compared to
the full I/O thread with serious performance issues and a pure fine-grained locking scheme
where the entire codebase has to be reviewed and potentially modified, it proved to be the
superior solution.

To assess future opportunities, I also investigated use cases and ideas beyond the cur-
rent state of the software environment (i.e., the NOVA microhypervisor and its runtime
environment). By conducting a modeled experiment with a high-speed network con-
nection, I was able to show that also in the case of the virtual network, fine-grained
locking will be a promising technique to provide fast, parallel network functionality. To
mitigate performance degradation due to virtualization overhead, also the use of recent
hardware extensions could relieve the load on currently highly contended VMM code paths.

The software solution implemented in this project can be an enabler for researching a
large variety of aspects concerning virtual SMP systems. In Chapter 6, I laid out oppor-
tunities for both improving and leveraging the enhancements of my contribution. NOVA

51



7 Conclusion And Outlook

could evolve into a flexible solution with the ability to dynamically distribute compute
power among virtual machines beyond the scope of single-processor VMs. Tackling the
scheduling challenges described in Section 2.2.3 could allow for highly utilized, secure
and robust server architectures powered by microkernels, virtualization, hot-plugging and
migration [9].
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