
Migration zur Laufzeit von virtuellen
Maschinen zwischen heterogenen

Hostsystemen

Live Migration of Virtual Machines between
Heterogeneous Host Systems

Jacek Galowicz
Matrikelnummer: 285548

Masterarbeit
an der

Rheinisch-Westfälischen Technischen Hochschule Aachen
Fakultät für Elektrotechnik und Informationstechnik

Lehrstuhl für Betriebssysteme

Betreuer: Dr. rer. nat. Stefan Lankes
Dipl.-Inf. Udo Steinberg (*)

(*) Intel Labs Braunschweig

Kurzfassung
Der NOVA Microhypervisor und der mit ihm in Kombination verwendete Userlevel
Virtual Machine Monitor schlagen die Brücke zwischen hocheffizienter Virtualisie-
rung und Mikrokern-Betriebssystemen. Virtuelle Maschinen stellen in NOVA einen
Weg dar, veraltete Software wiederzuverwenden und allgemein Betriebssysteme von
der darunterliegenden Plattform logisch zu entkoppeln. Live-Migration ist eine Tech-
nik, mit der sich virtuelle Maschinen zwischen zwei Host-Systemen zur Laufzeit
transferieren lassen, ohne diese dabei für einen längeren Zeitraum unterbrechen zu
müssen. Das Ziel dieser Arbeit ist es, neue Möglichkeiten zu finden, den VMM in-
sofern zu erweitern, dass virtuelle Maschinen zwischen heterogenen Host-Systemen
migriert werden können. Für das Beispiel von Netzwerkschnittstellen wird ein Me-
chanismus entworfen, der mit Hilfe von ACPI Hotplug-Features die Live-Migration
virtueller Maschinen ermöglicht, die schnelle pass-through-Netzwerkkarten zur Kom-
munikation benutzen. Um stehende TCP-Verbindungen migrationsübergreifend in-
takt zu halten, wird das bestehende Netzwerkkarten-Modell um die Fähigkeit er-
weitert, seinen eigenen physischen Umzug im Netzwerk an umliegende Netzwerk-
teilnehmer zu propagieren. Sämtliche neu implementierten Mechanismen kommen
ohne Änderungen am Sourcecode des Gastsystems aus. Eine mögliche Gastsystem-
Konfiguration wird präsentiert, die mit dynamisch entfernten und wiederhinzuge-
fügten Netzwerkkarten umgehen kann, während sie Dienstanfragen über Netzwerk
bedient. Die vorgestellte Lösung ist völlig unabhängig von den auf den verschiede-
nen Hosts eingesetzten Netzwerkkarten-Modellen. Am Ende dieser Arbeit wird die
Leistung des Prototyps ausgewertet und es werden zukünftige Einsatzmöglichkei-
ten beschrieben, sowie Optimierungspotenzial in der bisherigen VMM-Architektur
in Hinsicht auf Live-Migration angemerkt.

Stichwörter: LfBS, Master-Arbeit, Microkernel, NOVA Microhypervisor, Vir-
tualisierung, Live-Migration, Pass-Through von PCI-Peripheriegeräten, ACPI, Hot
Plugging, GNU/Linux, NIC Bonding Treiber, gratuitous ARP

v

Abstract
The NOVA microhypervisor and its companion user-level virtual-machine monitor
facilitate the construction of systems with minimal application-specific trusted com-
puting bases. On NOVA, virtual machines provide a way for reusing existing legacy
software and for decoupling guest operating systems from the underlying platform
hardware. Live migration is a technique to transfer a virtual machine from one
host system to another with minimal disruption to the execution of the VM. The
goal of this thesis is to explore how the existing live migration feature of the VMM
can be extended, such that virtual machines can be moved between heterogeneous
host systems with different CPU capabilities and different host devices. Using net-
work devices as an example, a mechanism is designed to migrate virtual machines
equipped with fast pass-through network interfaces, utilizing native ACPI hot plug-
ging mechanisms. To preserve standing guest TCP connections over migrations,
the network interface model is extended to make the host propagate the physical
movement of the guest within the network to other network participants. Guest
system source code is left untouched. It is shown how to configure guest systems
to enable them for dealing with disappearing/reappearing network interfaces while
servicing network requests during the migration of themselves. The presented solu-
tion is device type agnostic and can also deal with devices which differ from host to
host. The prototype implementation is evaluated, future possibilities are outlined
and possible performance optimizations are described.

Keywords: Chair for Operating Systems, Master Thesis, Microkernel, NOVA
Microhypervisor, Virtualization, Live Migration, PCI Device Pass-Through, ACPI,
Hot Plugging, GNU/Linux, NIC Bonding Driver, Gratuitous ARP

vii

Acknowledgements
I would like to express my deep gratitude to Stefan Lankes and Michael Konow,
for enabling my internship and subsequently my master thesis at Intel Labs Braun-
schweig. Also, I would like to thank Udo Steinberg, my always helpful and patient
supervisor, as well as Julian Stecklina and Bernhard Kauer from the operating sys-
tems group of TU Dresden for their valuable advice. Finally, special thanks goes
to all the colleagues and new friends for making my year in Braunschweig very
worthwhile.

ix

Contents

List of Figures xiii

1. Introduction 1

2. Background and Related Work 3
2.1. Virtualization . 3

2.1.1. Faithful Virtualization Versus Paravirtualization 5
2.1.2. Intel VT Virtualization Hardware Extensions 5
2.1.3. Challenges in Virtualizing Fast Network Adapters 6

2.2. Real Device Pass-Through . 8
2.2.1. IOMMU . 9
2.2.2. PCI Bus . 9

2.3. Live Migration of Virtual Machines 10
2.3.1. Cold Migration Versus Live Migration 12
2.3.2. Migration Friendly Hardware 13

2.4. PCI Hot Plugging . 14
2.4.1. ACPI Hot Plugging . 15

2.5. Microkernel Operating Systems . 15
2.5.1. The NOVA Microhypervisor 17
2.5.2. The NOVA UserLand (NUL) 18

3. Design 21
3.1. VM Migration between Heterogeneous Hosts 21
3.2. Possible Solutions . 21
3.3. Design . 23

3.3.1. The Adapted Live Migration Process 23
3.3.2. Virtual NIC Migration . 25
3.3.3. ACPI Controller Model . 26

4. Implementation of Pass-Through-Device Migration 29
4.1. The Existing Live Migration Infrastructure 29

4.1.1. Memory Synchronization . 30
4.1.2. The Restore Bus . 32

4.2. Network Interface Migration . 35
4.2.1. Keeping TCP Connections Alive with Gratuitous ARP 36

4.3. ACPI Controller Model and Hot Plugging 37
4.3.1. Adding Hot Plugging . 41

xi

Contents

4.3.2. Triggering Hot Plug Events During Live Migration 44
4.4. Guest Configuration with ACPI and Bonded NICs 46

4.4.1. Configuring the Bonding Driver 47

5. Evaluation 53
5.1. Network Latency During Migration 53
5.2. Network Throughput During Migration 54

6. Conclusion and Future Work 59
6.1. Architectural Suggestions for VMMs 60

6.1.1. Tracking Host Access to Guest Memory 60
6.1.2. Optimizing the Memory Resend Mechanism 61
6.1.3. Bonding Guest Driver Optimizations 61
6.1.4. General NIC Hardware Improvements 62

6.2. Outlook . 63

A. Code Listings 65

B. Acronyms and Terminology 73

Bibliography 75

xii

List of Figures

1.1. Live Migration from a Very High Level Perspective 1

2.1. Layer Diagrams of the Different Hypervisor Types 4
2.2. Packet Processing Time with Varying Packet Sizes 7
2.3. A VM Using a Virtual Device and a Physical Pass-Through Device . 8
2.4. DMA Remapping of the IOMMU in the Platform Topology 9
2.5. General Computer System Architecture with Numbered Communi-

cation Interfaces [32] . 11
2.6. Network Throughput of a Fictional VM Migration 13
2.7. Layer Diagrams of Monolithic Kernel Vs. Microkernel 16
2.8. System Structure of a Virtualization Platform Using NOVA/NUL . . 18

3.1. Overview of Live Migration Process Phases and Needed Extensions . 24

4.1. Workflow of the Migration Algorithm 30
4.2. Diagram of a Raw ARP Packet . 36
4.3. Gratuitous ARP Packet Filled with Values 36
4.4. ACPI Table Structure as Found in Memory at Boot 38
4.5. High Level Overview of the ACPI Unplug Procedure 43
4.6. Network Topology Inside the Virtualization Environment 47

5.1. Expected Network Latency of a VM During a Fictional Live Migration 55
5.2. Measured Network Latency of a VM During the Live Migration Process 55
5.3. Network Throughput of a VM (Upper Graph) and CPU Load of the

Host (Lower Graph) During Live Migration 56

xiii

1. Introduction

Any
whe

re

Figure 1.1.: Live Migration from a Very High Level Perspective

The human ability to abstract can take on an interesting scale. This becomes
especially apparent when looking at current computer technology. Humans do, for
example, write and run computer programs which can access data files with the
impression of unlimited size. At the same time an operating system transparently
abstracts the cylinders, heads and sectors of hard disks or other media to provide
the promised plain and linear view onto this file’s data space. The program being
run is also provided with the illusion of having access to the whole memory space of
the underlying computer system. Then again, the operating system, utilizing hard-
ware mechanisms for this, transparently translates access to mere virtual memory
addresses to real physical ones. One might expect that the abstraction is overcome
when inspecting the operating system as it represents the lowest layer of software
executed by the computer system. But with increasing regularity, even the computer
system itself is an illusion. A hypervisor system running at an even lower software
level multiplexes the hardware to be able to run multiple guest operating systems
while logically isolating each other.

All this effort to delude software with abstract views of the system by putting
complex layers of software beneath it has the purpose of providing an abstract run-
time environment. Applications created for such an abstract runtime environment
are capable of running with minimal knowledge about the underlying system com-
ponents. Only with such a system of stacked layers of abstraction it is possible to
write and run portable software, being safely isolated from other code and data at
the same time.

1

1. Introduction

Implementing a layer of software which provides some kind of delusion like infinite
files, linear memory spaces or whole computer systems is also called virtualization.
The area of virtualization which underwent most change and progress in the last
decades is the virtualization of whole computer systems. Guest systems are run
in so-called virtual machines (VM). As technological progress makes it increasingly
efficient to run software within VMs, virtualization solutions are becoming attractive
in more and more areas of computation. When virtualizing classic server systems,
it is possible to consolidate multiple systems on one physical host. Assuming that
servers usually do not use their hardware to capacity all the time, it is possible
to reduce energy and space consumption this way. VMs can also be used to run
untrusted or legacy software.

Another famous advancement which emerged from virtualization technology in
the last years is live migration. VMs can be regarded as mere memory states on
the executing host system. Therefore they represent plain data which can be sent
anywhere over network. A logical consequence is the idea to transfer VMs with the
aim to execute them on other hosts. Virtualization layers which implement this idea
decouple software from the hardware it is executed on. Now it is not only possible to
consolidate multiple VMs on single host machines, but also to rebalance them over
hosts during runtime. The enormous amount of flexibility gained from this feature
is an important contributory cause for the ongoing pervasiveness of virtualization
in industry.

However, in some areas virtualization is stretched to its limits. Where high I/O
performance like in computer networking with maximum throughput is needed,
virtualization becomes a bottle neck. As it is still not possible to virtualize e. g.
10 Gbit/s network interfaces, it came into fashion to give VMs full access to indi-
vidual host devices. Current hardware supports to do this in a strictly isolated way.
Unfortunately, this prevents live migration, since such a VM is not representable
by a plain memory state any longer. A dramatic consequence of this constraint
is that users are forced to decide between the flexibility of virtualization or I/O
performance.

The focus of this thesis is to explore possibilities to provide a solution for this
problem. On the example of VMs employing fast network interfaces of their host
system, it is shown how to make them migratable again. Beginning with an overview
of involved technologies for this project, the second chapter clarifies all terms used
throughout the thesis. A precise definition of the project goal is given in chapter
three. After discussing similar solutions other research teams came up with to solve
the same problem, design decisions are made and justified. Needed preliminary work
and new subsystems are identified and high-level descriptions are given. Chapter
four describes the actual implementation in detail. A performance evaluation of the
implementation follows in chapter five. Finally, chapter six gives a roundup of the
project achievements and gives further suggestions regarding software architecture
optimizations for deploying performant live migration. An outlook section sums up
some philosophical impulses about what potential lies in future platforms which are
designed with the new feature in mind.

2

2. Background and Related Work
This chapter explains all subsets of virtualization technology needed to describe
and solve the problem presented in this thesis. Being the foundation of all following
subsystems, virtualization in general is defined and outlined in different facettes. An
important part is hardware support which elevated virtualization technology to the
maturity enabling its dramatic growth in the IT industry. The Intel VT hardware
extensions are described as a prominent example. Marking a yet unsolved bottleneck
in virtualization, massive I/O with virtual peripheral devices like network cards does
not lead to the same effective data rates as real hardware in bare metal machines
provides. The IT industry usually works around this by giving virtual machines
isolated access to real hardware devices. Although this is an elegant solution in
many cases, the utilization of real hardware in virtual machines prevents the use
of live migration. A short analysis of this bottleneck is followed by explanations
about the common workaround of real device pass-through. Live migration is a
very complex topic in research and also a key feature to this project, thus explained
in another section. The last section contains an explanation of how PCI hot plugging
is done in general and in the example of ACPI hot plugging.

2.1. Virtualization
Virtual machines have finally arrived. Dismissed for a number of years
as merely academic curiosities, they are now seen as cost-effective tech-
niques for organizing computer systems resources to provide extraordi-
nary system flexibility and support for certain unique applications.

Robert P. Goldberg, 1974

In the early days of computer technology, mainframe computers provided virtu-
alization to multiplex one big physical machine among multiple users. This was
done for cost reasons. Nowadays, costs are no longer an issue for buying computer
systems. Nevertheless, virtualization has a big revival in the IT industry because of
its variety of advantages. These will be clear after defining the term virtualization
and explaining the technical background:
Definition (Computer Virtualization). Virtualizing a computer means creating vir-
tual instances of its hardware which do not physically exist.

An application on a virtual computer system must run with the identical effect to
executing it on a physically existing computer system. The physical system provid-
ing the virtualization mechanism is called host machine, while the virtual computer

3

2. Background and Related Work

system is a virtual machine (VM) or guest machine. Being mostly implemented
in software, the virtualization mechanism itself is usually embodied by a program
called the virtual machine monitor (VMM), or hypervisor.

In his PhD thesis, Robert P. Goldberg dinstinguished between two fundamental
types of hypervisors [10]:

Type I Bare metal hypervisor (Examples: Xen, KVM, lguest, NOVA)

Type II Extended host hypervisor application running on the host OS (Examples:
QEMU, Bochs)

Type 1

Hardware
Hypervisor

VM VM VM VM

Type 2

Hardware
Operating System

Hypervisor

VM VM
App App

Figure 2.1.: Layer Diagrams of the Different Hypervisor Types

Type I hypervisors are directly included into the OS kernel. This can be any
commodity OS like Linux with a special virtualization module like KVM [20]. Al-
ternatively, the OS can be primarily designed for virtualization, like Xen [2]. The
hardware is then only accessible by the user via virtual machines. This type of
virtualization provides best performance, because it is done with highest privilege
level and low overhead, possibly even using hardware support for accelerated virtu-
alization.

Type II hypervisors can usually be executed in user space without any special
privileges. While they are less performant because of their lacking use of hardware
support, they can implement totally different architectures, which renders them
more flexible. A very impressive example for this type is Fabrice Bellard’s Javascript
x86 emulator1 which boots a small Linux system within an internet browser window
in seconds. As the underlying project of this thesis uses a type I hypervisor, type II
hypervisors will not be minded in the following.

As of today, virtualization is often used to host many VMs on few physical ma-
chines. This can reduce power consumption, since many systems just idle in the
majority of time. In data centers it can also reduce the need for big cooling plants
and floor space. Another interesting use case is the isolation of untrusted software

1http://bellard.org/jslinux/

4

http://bellard.org/jslinux/

2.1. Virtualization

in VMs instead of running it together with trusted software using sensitive data on
the same platform. As computer systems evolve, it can also be useful to be able to
run VMs emulating legacy hardware for needed legacy applications.

2.1.1. Faithful Virtualization Versus Paravirtualization
In general, virtualization usually means full virtualization or faithful virtualization.
Virtualizing a computer then means that every memory and I/O read/write has
the same effect as on existing hardware. The hardware architecture visible to the
software is then completely identical to a possible configuration of real hardware.
This has the obvious advantage that software being run on such a VM does not need
to be rewritten in any regard. On the downside, faithful virtualization has several
implications regarding performance. Any use of devices outside the CPU involves
I/O communication. Reads and writes from or to I/O ports as well as most memory
mapped I/O (MMIO) registers have to be trapped by the hypervisor. Trapping the
VM means switching back from guest to host (VM exit), processing the I/O access
to change the state of the VM accordingly and switching back to the guest again
(VM resume). A switch between host and guest in both directions is in general
called a VM transition. This approach is called trap and emulate and represents the
main bottleneck when virtualizing hardware devices.

One common concept to improve this, is reducing the number of VM exits. If it is
possible to exchange more information with the hypervisor on every VM transition
while at the same time reducing transitions, device virtualization would be more
efficient. The first project tackling this idea was the Denali isolation kernel [35].
Whitaker et al. loosened the constraint of virtualizing the exact host architecture
to allow simplifications in the virtualized hardware interface. Instead of expressing
communication with the hardware as sets of I/O accesses, a paravirtualized guest
system communicates with the hypervisor using hypercalls.

The underlying virtualization solution does not use paravirtualization, which in-
troduces a certain amount of complexity to the presented problem.

2.1.2. Intel VT Virtualization Hardware Extensions
Several Intel CPUs today provide the Intel Virtualization Technology extensions
(VT) [14]. Formerly codenamed as Vanderpool, they are now available in two ver-
sions: VT-x for x86 processors and VT-i for Itanium processors. These extensions
provide two modes to operate the CPU in: VMX root operation and VMX non-root
operation. In general, the hypervisor will operate in the former mode, while all
VMs will only operate in the latter. AMD processors provide a similar architec-
ture for hardware assisted virtualization called Secure Virtual Machine Architecture
(SVM) [1].

VMX root operation is very similar to non-VMX operation, although it provides
the hypervisor software the possibility to configure the behavior of VMX non-root
operation for VMs. VMX non-root operation in turn, is restricted, which is not

5

2. Background and Related Work

detectable by VMs. Whenever a VM executes restricted instructions or does I/O, a
VM exit is initiated. This mechanism is active in any privilege ring, allowing guest
software to run in the privilege rings it was initially designed for. It is then the
duty of the hypervisor to maintain the state of the virtual machine in a way a real
machine would react. This can be done to such an extent that the VM is unable to
distinguish its environment from real hardware.

The previously mentioned possibility to configure the behavior of the processor in
VMX non-root mode is given via the 4 KB large virtual machine control structure
(VMCS). A hypervisor can maintain one VMCS per VM, or in case of multicore
VMs, one VMCS per virtual processor. Every processor in the host system has a
VMCS pointer which can be set to the VMCS of the next VM to be executed.

A very important subsystem of this hardware virtualization support are extended
page tables (EPT) [4]. Usually, the memory space processes use is merely virtual and
translated by the Memory Management Unit (MMU) to real physical addresses as
they exist in the memory hardware. Guest operating systems also use this feature,
but the memory range they are provided with is not the real physical memory range
as it would be in a real machine. Thus, the translation to guest-physical addresses
by the guest page tables corresponds to host-virtual addresses. VMs running on
non-VT hardware have to be trapped by the VMM whenever the guest OS tries
to load or switch its own page tables. The trap handler of the VMM would then
complete the guest-virtual to guest-physical mapping proposed by the guest to a
host-physical mapping and store it in a shadow page table. Then, the shadow page
table would be the one actually be used by the MMU. This layer of indirection was
significantly simplified with the introduction of EPTs. Guest operating systems can
now natively maintain their page tables. On every page fault, the MMU traverses
the guest page tables and then the nested page tables to provide the corresponding
mapping without any costly VM exits. [30, 9]

2.1.3. Challenges in Virtualizing Fast Network Adapters

While it is possible to virtualize processor and memory components of a VM with
near native performance, I/O virtualization is still a major cause for performance
degradation. Each interaction between the guest OS and any of its devices involves
I/O, hence needs to undergo expensive VM transitions and device emulation steps.
The device model itself might also involve multiple layers of software for isolating and
multiplexing between several VMs. Especially high-throughput network interface
devices involve very frequent I/O interaction with the OS to be able to handle the
very high rates of incoming packets.

To get some understanding about the actual timing dimensions needed to drive a
10G NIC to full speed, see Figure 2.2. Network packets can have netto sizes between
64 B and 1518 B. Before a packet is transmitted over copper cable, an 8 B preamble
as well as about 12 B interframe gap is appended to the packet by the NIC. If the
receiving system exceeds a certain amount of processing time, it effectively throttles

6

2.1. Virtualization

the packet throughput.

𝑛1 = 64 𝐵

𝑃𝑎𝑐𝑘𝑒𝑡
+ 8𝐵 𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 + 12𝐵 𝐼𝐹𝐺 = 672 𝑏𝑖𝑡

𝑃𝑎𝑐𝑘𝑒𝑡

𝑛2 = 1518 𝐵

𝑃𝑎𝑐𝑘𝑒𝑡
+ 8𝐵 + 12𝐵 = 12304 𝑏𝑖𝑡

𝑃𝑎𝑐𝑘𝑒𝑡

𝑡1 = 672 𝑏𝑖𝑡

𝑃𝑎𝑐𝑘𝑒𝑡

⧸︂
10𝐺𝐵𝑖𝑡

𝑠
= 67.2 𝑛𝑠

𝑃𝑎𝑐𝑘𝑒𝑡

𝑡2 = 12304 𝑏𝑖𝑡

𝑃𝑎𝑐𝑘𝑒𝑡

⧸︂
10𝐺𝐵𝑖𝑡

𝑠
= 1230.4 𝑛𝑠

𝑃𝑎𝑐𝑘𝑒𝑡

0 2 4 6 8 10 12 14 160

200

400

600

800

1,000

1,200

1,400

67 ns15
18

B
pa

ck
et

s
@

10
G

64
B

pa
ck

et
s

@
10

G

Packet Rate / 106

𝑠

Pr
oc

es
sin

g
T

im
e

/
𝑛

𝑠

Figure 2.2.: Packet Processing Time with Varying Packet Sizes

Processing times of down to 67 ns have to be achieved to enable for full NIC
performance in VMs. Even with current hardware assistance mechanisms for virtu-
alization it has not yet been shown how to meet this timing constraint.

A common approach to tackle this problem is paravirtualization, which is already
deployed and broadly used in the IT industry. Virtio is a very prominent example for
simplified device interfaces in paravirtualization [31]. With heavily simplified device
models and drivers, it is possible to dramatically shrink emulation complexity and
frequency of I/O communication between guest OS and its virtual devices. A down-
side of this approach is the inherent virtualization-awareness, leading to guest OS
code change, and the remaining high amount of CPU overhead compared to native

7

2. Background and Related Work

environments. There have been efforts to optimize the path any network packet has
to take through the software stack to optimize the throughput for paravirtualized
devices. However, this still did not reach native performance as it does not handle
the I/O problem itself [7, 27].

2.2. Real Device Pass-Through

VM

VMM

DMA Remapping HW

HW

Guest OS

App App App

Device Driver A’ Device Driver B

Virtual Device Emulation

Device Driver A

A B

Figure 2.3.: A VM Using a Virtual Device and a Physical Pass-Through Device

Another approach to provide VMs with devices with high throughput-rates is
passing the VM control over actual physical devices. A completely virtual computer
system would then work with single isolated physical devices belonging to the host
system. Figure 2.3 illustrates this configuration. The VM can see two devices, of
which device A’ is a virtual model of physical device A and device B is directly
passed through. Passing through devices to a guest OS like this enables for near
native efficiency. The Intel VT-d extensions complement the existing VT extensions
for this purpose. The efficiency is still only near native because the interrupt and
DMA emulation implies a certain amount of overhead. Nevertheless, this approach
is a widely accepted solution in the IT industry.

8

2.2. Real Device Pass-Through

2.2.1. IOMMU
To give a VM access to a physical device in an efficient way, it is necessary to
implement a number of mechanisms. I/O ports need to be accessible from the
guest, as well as memory mapped I/O page access has to be translated accordingly.
Interrupts, which are the common way to enable devices to notify the OS about
hardware events, need to be routed to the appropriate VM. Direct Memory Access
(DMA) initiated by physical devices, needs to be narrowed down to pages mapped
to the respective VM to enhance security and stability of both host system and other
VMs. The hardware device capable of handling this kind of device I/O is called I/O
Memory Management Unit (IOMMU) [3].

Intel’s VT-d extensions are represented by a generalized IOMMU implementation
located in the north bridge of the system, as shown in Figure 2.4. The I/O ports
as well as memory pages and interrupt routes of a system can be partitioned into
protection domains. These protection domains are transparent to any VM [15].

DMA Remapping

North Bridge

Integrated
Devices

DRAM

ProcessorProcessor

Interconnect

PCI Devices South
Bridge LPC

PCI

Legacy Devices

Figure 2.4.: DMA Remapping of the IOMMU in the Platform Topology

2.2.2. PCI Bus
The Peripheral Component Interconnect (PCI) bus was invented to connect periph-
eral devices within computer systems. It found widespread use in mobile, desktop,
workstation, server, and embedded computing after its first implementation in IBM
PC compatible systems. Traditionally, the PCI bus was connected to the CPU bus

9

2. Background and Related Work

via the north bridge controller on the motherboard. Using PCI, it is possible to com-
municate with extension hardware via programmed and memory mapped I/O. PCI
devices share four interrupt lines on the bus. These can emit CPU interrupts which
are directly routed either to interrupt controller or APIC bus. Newer PCI revisions
introduced the Message-Signaled Interrupt (MSI), which is basically a memory write
access translated into an interrupt cycle by the north bridge.

The PCI bus2 was designed to represent an interface for plug-in cards, but in
practice most computer motherboards also already contain onboard PCI devices.
Generally, a root bus exists to which up to 32 PCI devices can be connected. To add
even more devices, a PCI bus bridge can be connected instead of a device. Such a
bus does again support the same number of PCI devices. Before a device is properly
configured to be reachable via programmed or memory mapped I/O reads/writes,
it has to be addressed by its Bus, Device, Function (BDF) identifier. These three
numbers identify the bus, device number slot and device function, if the PCI device
embodies multiple devices in one.

2.3. Live Migration of Virtual Machines
In virtually every branch of computing it is desirable to be able to move execut-
ing software from one machine to another without the need of a restart. Having
such a mechanism, it is possible to take a computer down for maintenance with-
out having to stop any important program running on it. Another use case is the
rebalancing of the CPU loads between multiple running servers. It would also be
advantageous to move the processes of relatively idle hosts together to a smaller set
of hosts to be able to shut the majority of machines down in order to save energy.
Especially in high performance computing it would reduce latency and maximize
throughput between compute nodes, if they were always in minimal reach, which
could be achieved dynamically with process migration. In heterogeneous clusters
consisting of machines with different amounts of processing power, processes could
be migrated to the fastest available nodes.

To successfully migrate a process, all resources it depends on on the source plat-
form, i.e. its residual dependencies, have also to be provided on the destination
platform as well. Migrating resources of a process, such as threads, communication
channels, files, and devices is not possible in all cases. Either services like system
calls, file systems, etc. are available on every node or requests are redirected to the
home node being able to provide them. Regarding Figure 2.5, the process state is
cut out of the running system along the interfaces demarked by 3○ and 7○. The
residual dependencies which need to be fulfilled on the target host are now both the
complete ISA as well as the part of the complete operating system state which is
relevant to the running process. Especially the latter might dramatically raise the
complexity of the migration environment when keeping in mind that it is certainly

2From hardware view PCI is not a bus any longer. However, from software view, it still is for
compatibility reasons.

10

2.3. Live Migration of Virtual Machines

Execution Hardware

Memory
TranslationSystem Interconnect (bus)

Controllers

I/O Devices
and

Networking

Controllers

Main
Memory

Applications
Libraries

Operating System

Drivers Memory
Manager Scheduler

ISA

Software

Hardware

1
2

3 3

4 5 6

8 8 8 8 7 7

9
10

11 11 12

13 14

Figure 2.5.: General Computer System Architecture with Numbered Communica-
tion Interfaces [32]

impractical to maintain perfectly equal operating system versions between all hosts.
The ISA is not allowed to differ between hosts at all. [28, 32]

From the point of view of a VMM, all states of guest processes and even guest
operating systems are represented by the state of a plain range of memory, i.e.
the guest memory. This could be written to disk, or sent over network, of course.
Migrating a whole VM instead of a process would then, again regarding Figure 2.5,
correspond to a cut at the interfaces 7○ and 8○, which separate hardware from
software. Having only the ISA and the hardware state as a residual dependency
is advantageous. Hardware can be virtualized efficiently and the state of virtual
hardware models does usually not have residual dependencies to the layers the VMM
is run on. In practice this means that a VMM with the same virtual hardware
configuration as the source VMM can be started on the target host. This new
VMM could then just receive the guest state to overwrite its own guest memory and
guest device model states with it. [6]

After the migration of the whole VM, it will run independently on the target
host. The source host can be switched off. As opposed to process migration, no
remaining residual dependencies make it necessary to keep it running. This big
simplification to process migration is bought with the need to transfer a whole

11

2. Background and Related Work

operating system, inducing network transfer volume overhead. However, the transfer
of data in the order of gigabytes is not an issue with modern 1 Gbit/s or even
10 Gbit/s network interfaces. Live migration has become a feature of virtualization
with broad acceptance in industry. Chen et al. even consider it one of the most
important features in this area of computing [5].

2.3.1. Cold Migration Versus Live Migration
In general, a running VM has to be stopped before its state can be written to disk or
sent over the network to be resumed on another host agian. The state of a frozen VM
is consistent, which is the requirement to let its execution continue at a different
point in time or on a different host. This approach is also called checkpointing.
Moving the checkpoint of a VM is a cold migration.

However, in many use cases it is not desirable to have to pause a VM to physically
move it. It may be running an important service and for availability reasons it has
to be moved away from a faulty host, for example. Checkpointing the VM and
transfering it would then lead to unacceptable downtime. Transfering the state
of a running VM is problematic because at least parts of the state which is being
transfered, change at the same time. For this reason, a mechanism is needed to track
which parts of the state changed to resend them immediately. Sending changes while
the VM state continues to change, leads to a recursive chain of transfer rounds which
needs to be cut at some point. In a last round the VM would be frozen to send
its last state changes, leading to a minimum downtime. This approach is called
pre-copy migration and was first demonstrated by Christopher Clark, et al [6].

Other approaches, to keep the VM state consistent during migration, exist. A
direct alternative to pre-copying all guest memory pages is post-copying them on
the target platform. Hines et al. demonstrated this in combination with a demand-
paging mechanism [13]. Haikun et al. presented another innovative solution. To
avoid a lot of network traffic, they demonstrated how to trace all VM-interaction
with the outside world before the migration and replay this on the target machine
to keep both synchronized [26].

The underlying migration algorithm this thesis is based on, implements the pre-
copy approach, hence all others are ignored. Figure 2.6 shows a qualitative network
traffic throughput graph of a VM during a fictional live migration. In this scenario,
the live migration is initiated at second 1. The VMM sends the guest state which
leads to throughput degradation of the VM since both use the host network interface.
It is possible to additionally throttle the guest network connection to provide the
VMM a higher throughput-rate to finish the migration earlier. Four seconds later,
the state synchronization between source and destination VMM is finished and the
VM is frozen. Transfering the rest of the state changes to the target VM and
resuming VM execution on the destination host takes 0.5 seconds in this scenario.
This downtime gap can be very critical and needs to be reduced to a minimum,
depending on the use case. Game servers, multimedia streaming servers or other
low-latency services, for example, are downtime-sensitive workloads. In the end,

12

2.3. Live Migration of Virtual Machines

0 1 2 3 4 5 6 7 8 9 100

20

40

60

80

100

pre migration

throughput degradation
during migration

downtime during
host switch

post migration

Time / s

T
hr

ou
gh

pu
t

/
M

B/
s

Figure 2.6.: Network Throughput of a Fictional VM Migration

the downtime gap predominantly depends on the network latency, the maximum
network throughput, and the size of the writable working set (WWS) of the VM.
The WWS is the set of memory pages which is continuously modified by the VM. As
soon as the pre-copy algorithm reduces the set of pages to be transfered down to the
WWS, it will need to stop the VM. With faithful virtualization, the size of the WWS
can hardly be manipulated. This means that the downtime is heavily dependent on
the actual workload. From second 5.5 on when the migration is completed, the
guest VM returns to maximum network throughput. The network throughput on
the destination host does of course depend on the maximum throughput of the
network interface of the host and on the possible network load caused by other
VMs.

2.3.2. Migration Friendly Hardware
In a perfect world it would be possible to read out the state of a piece of hardware
and write it back to another identical device, which is the requirement for migrating
a VM using it. This is not easily possible with existing hardware. The state of a
device is only visible to the operating system via its registers. Hardware registers
are usually different in their read/write behavior compared to a portion of memory.
Read-write registers which have no side effects after access are migratable, however

13

2. Background and Related Work

there also exist registers with side effects which break with any read-restore hopes.
Write-only, read-write-clear, write-clear, etc. registers cannot be read and/or written
back to hardware.

2.4. PCI Hot Plugging
For availability as well as extensibility reasons, it has always been important for the
administration of server computers to be able to substitute parts of the hardware
without shutting down the system. Pulling out a hardware device of—or putting
it into—a running system is called hot plugging. Obviously this cannot work if the
software is not involved into the process of removing or adding a device it shall
employ. Some kind of controller is needed to provide a base of negotiation between
user, operating system and hardware. The process of hot removing a device generally
looks like the following, with the example of PCI cards:

1. The administrator determines that a PCI card must be removed and notifies
the running operating system about this plan. Notifying is usually done with
a shell command or the press of a button on the mainboard.

2. The operating system unloads the driver and notifies back to the hardware
that it can power off the device.

3. The system unpowers the PCI slot of the device and notifies the user e. g. via
a flashing LED on the mainboard that the device is now without power.

4. The administrator removes the device.

Hot adding a device into an unpowered PCI slot works analogously. Hot plugging
is not only limited to PCI devices; hardware exists which is even able to deal with
hot plugging of CPUs.

There are mainly three different types of PCI hot plug controllers [36]:

ACPI Hot Plug Since laptop computers supporting docking stations have a similar
ACPI-mechanism providing hot plugging of additional hardware, general PCI
hot plugging can be implemented with standard ACPI general purpose events.

SHPC (Standard Hot Plug Controller) The PCI-SIG defines a standard PCI hot
plug controller [11].

Proprietary controllers Several companies provide their own proprietary hot plug
controller solutions.

Although the Linux kernel as of version 2.6 supports most hot plugging standards,
it is preferable to pick the one which brings the least implementation complexity to
the hypervisor. A guest OS kernel already supporting hot plug events which was

14

2.5. Microkernel Operating Systems

configured without any virtualization in mind, already provides a perfect interface
exploitable by a hypervisor. This way live migration can plainly be hidden from a
faithfully virtualized system behind hot plugging events.

2.4.1. ACPI Hot Plugging
In contrast to other solutions, the ACPI variant of a hot plug controller is based on
a very simple and cleanly defined open interface. Thus, an ACPI controller model
implementation introduces the least complexity into the hypervisor.

ACPI is an abbreviation for Advanced Configuration and Power Interface and
stands for an open standard for device configuration and power management con-
trolled by the operating system. The first specification was released 1996 by Intel,
Microsoft, and Toshiba. [12]

Mainboards providing ACPI support, write certain tables into main memory of
the system early at boot time. These tables describe all ACPI-related capabilities to
the operating system. Some tables provide fixed information at fixed offsets, others
describe system functionality in form of methods doing I/O communication with the
hardware. The latter form of description is expressed in ACPI Machine Language
(AML) compiled from ACPI Source Language (ASL), for which the operating system
has to implement an interpreter. This way the operating system can assume certain
interfaces with known functionality implemented by AML-procedures. Intel provides
a compiler for ASL which is also able to decompile AML code [18]. See Figure 4.4
on page 38 for an example table configuration. [17]

2.5. Microkernel Operating Systems
Typical operating systems unite all hardware handling, virtual memory manage-
ment, interrupt handling, scheduling, file systems, device drivers, etc. in one big
piece of software binary: the kernel. Kernels like this are called monolithic kernels.
Hardware architectures like x86 provide security enhancements like privilege rings
to exclusively allow only certain processes to manipulate the whole system state.
Monolithic kernels usually let applications run in unprivileged user space (ring 3 on
x86 systems), while all kernel threads run in privileged kernel space (ring 0). This
configuration already represents a great increase of system security and stability,
because it allows to isolate applications from direct system access and also from
each other. A crashing application can neither access data of other applications, nor
crash the whole system.

However, in practice, software is rarely free of bugs. These can obviously occur
in kernel code, which is a potential problem for the security and stability of the
system. A malicious device driver, for example, can already jeopardize the integrity
of the whole system. The portions of code in the system which have to be trusted,
are called the Trusted Computing Base (TCB). To inherently improve the security
and stability of a system, the minimization of its TCB is desired. Nevertheless, the

15

2. Background and Related Work

kernels of monolithic operating systems steadily increase in size, to support the ever
growing variety of new hardware components new systems can consist of.

An alternative to this system architecture are microkernel operating systems. Ar-
chitects of microkernel operating systems achieve a reduction of the TCB by moving
as much code as possible out of kernel space. In such a system, virtual memory han-
dlers, file systems, interrupt handlers, and device drivers are individual user space
applications, each, equipped with privileges reduced to the absolute minimum. The
microkernel only implements three key abstractions: Address spaces, threads and
Inter Process Communication (IPC). Figure 2.7 shows the typical layers of both
monolithic and microkernel systems. User space applications in monolithic operat-
ing systems ask for system functions like e. g. file system access via system calls. In
microkernel operating systems, applications communicate with the respective server
applications via IPC. The great advantage of this approach is, that a crashing device
driver, for example, cannot possibly tear down the whole system. Malfunctioning
device drivers can at most affect applications depending on them. Furthermore,
they can simply be restarted. Additionally, due to their small size in the order of
tens of kilobytes, microkernels can even be made formally verifiable to certain extent
[21].

Hardware

Drivers, Inter-
rupt Handling, etc.

Scheduler, Virtual Memory
IPC, File System

VFS

A
pp

A
pp

A
pp

Hardware
IPC, Interrupts, Scheduling

D
riv

er

Fi
le

Sy
st

em

V
irt

ua
lM

em
.

A
pp

A
pp

Kernel
Space

User
Space

System
call

IPC

Figure 2.7.: Layer Diagrams of Monolithic Kernel Vs. Microkernel

On the other hand, microkernels still have not gained broad acceptance in the
industry. An important cause for this is the belief that microkernels inherently
introduce overhead into systems deploying this architecture. While monolithic ker-
nels handle system calls in a single context, servicing an application in microkernel
operating systems can cause multiple IPC jumps between server applications, intro-
ducing the feared overhead. Although microkernel researchers have shown that IPC
overhead can be reduced to an absolutely acceptable minimum, acceptance is still
only increasing slowly. [25, 24]

16

2.5. Microkernel Operating Systems

2.5.1. The NOVA Microhypervisor
The underlying microkernel used for this thesis project is the NOVA microkernel.
NOVA is a recursive abbreviation for NOVA OS Virtualization Architecture. It was
initially developed at TU Dresden and is now maintained at Intel Labs.

Motivation to develop NOVA arised from the observation that, just like monolithic
operating systems in general, type 1 hypervisors have an ever growing TCB. The
novel approach of NOVA is to merge microkernel design principles with hardware
virtualization capabilities of modern processors. This way virtualization goals like
the performance from existing virtualization solutions and the stability and security
of microkernels could be combined. Because of this, NOVA is called a microhyper-
visor.

Mixing hardware virtualization features with microkernel design principles intro-
duces a certain divergence from other virtualization solutions in terms of notation.
Usually the terms hypervisor and Virtual Machine Monitor can be used interchange-
ably. In this case the microkernel is the hypervisor, hence the new term microhyper-
visor. But then NOVA only provides interfaces for use of the hardware virtualization
features Intel VT-x and AMD-V, without actually virtualizing a whole computer
architecture. The virtual architecture needs to be organized and controlled by a
VMM which manages interaction between VMs and the physical resources of the
host. Therefore, VMMs are their own user space application instances in isolated
protection domains, each hosting a VM.

A NOVA system running VMs in different protection domains looks like a typ-
ical type 1 hypervisor, comparable to Xen. In contrast to existing solutions, the
microhypervisor consists of about 9000 LOC3 which are executed in kernel space.
This is in orders of magnitude less privileged and trusted code. To stay at such a
minimum of code size, NOVA provides only IPC mechanisms, resource delegation,
interrupt control, and exception handling. The set of hardware being driven by the
microhypervisor is minimized to interrupt controllers, the MMU and IOMMU.

An innovative key feature of NOVA is its capability based interface for providing
applications access to resources. A capability stands for some kind of kernel object
and is represented by a capability selector. Such a capability selector is an inte-
gral number, similar to UNIX file descriptors. Every protection domain within the
system has its own capability space, which in turn means that no global symbols
can exist to reference kernel objects. The capability paradigm enables fine-grained
access control in accordance with the wish of designing a system with the principle
of least privilege among all components [23].

NOVA implements only five different types of kernel objects:

Protection Domain PDs provide spatial isolation and act as resource containers
consisting of memory space, I/O space and capability space.

3LOC: Lines Of Code

17

2. Background and Related Work

Execution Context An EC can represent a virtual CPU or an activity similar to a
thread.

Scheduling Context SCs couple a time quantum with a priority. An EC has to be
equipped with an SC to actually obtain CPU time for execution, i.e. only the
combination of an EC with an SC can be compared to the classic concept of
a thread.

Portal Portals are dedicated entry points into PDs for IPC or exception handling.
Other PDs can be granted access to these.

Semaphore Semaphores provide a synchronization primitive between different ECs
which can potentially execute on different processors. They are often used to
signal the occurrence of HW interrupts or timer events to user applications.

Scheduling is implemented in form of a preemptive priority-aware round-robin
scheduler. An execution context calling a portal can either be paused to not lose
CPU time during portal handling or it can donate a part of it to the portal handling
EC. This has in consequence that server applications could be implemented without
pairing any of their ECs with SCs. In this case, the service would completely run
with CPU time donated by portal callers. [34, 33]

2.5.2. The NOVA UserLand (NUL)

Vancouver
VMM

Vancouver
VMM

Vancouver
VMM

Sigma0DriversDriversDriversDrivers AppsAppsAppsApps

NOVA Microhypervisor

User Space

Kernel Space

Figure 2.8.: System Structure of a Virtualization Platform Using NOVA/NUL

With a kernel whose size is minimized to extreme extent, the major part of the
operating system runs in user space. Apart from the microhypervisor, the virtual-
ization layer is decomposed into a root partition manager, device drivers, general
services, and multiple VMM instances. NOVA was published together with the
NOVA UserLand (NUL), which implements these parts.

The first application to be started after boot which NUL provides is the root
partition manager called Sigma0 4. Initially, it claims the whole memory and I/O

4Microkernel literature usually refers to 𝜎0 as the root partition manager process

18

2.5. Microkernel Operating Systems

resource area. In the following it creates protection domains etc. for other processes
and grant or delegate them access to kernel objects like memory or I/O resources.

Figure 2.8 presents the composition of a booted NUL system. On top of NOVA,
the Sigma0 process manages the access to system resources by the other processes.
Running processes are applications, drivers and VMMs.

The Vancouver Userlevel-VMM

The VMM runs on top of the microhypervisor and as a user space application, it has
its own address space. It supports the execution of unmodified operating systems in
a VM, all implemented with about 20K LOC. The VMM is the handler for all VM
exit events and contains one handler portal for every possible event type. As guests
are usually preempted by VM exits when they try to execute privilege-sensitive
operations, the VMM implements an instruction emulator to emulate the effect of
those.

Guest-physical memory is managed by mapping a subset of the memory of the
VMM into the guest address space of the VM. Memory mapped as well as port
programmed I/O is either intercepted or directly mapped to real hardware. This
way devices can either be emulated or real devices are passed through to the VM.

The software architecture of the VMM from a programmer’s point of view tries to
model a real computer system. A main class exists representing a motherboard con-
taining a number of virtual busses via which system components can be connected.
VM configurations are assembled from command line arguments. The respective
command line argument handler dispatches the right object creation procedure for
every argument item. Upon device model creation, the model object is connected to
all relevant busses. Information like discovery messages, interrupt requests, network
packets, etc. can then be sent over the according bus structure without knowing the
recipients.

19

3. Design
This chapter describes the problem of live migration between heterogeneous hosts
in detail and outlines the set of possible solutions. After discussing the advantages
and disadvantages of each, the solution of choice will be backed with arguments and
planned for implementation.

3.1. VM Migration between Heterogeneous Hosts
Although live migration of virtual machines is very useful and already supported by
many industrial hypervisor solutions, it narrows down the variety of possible VM
configurations. In scenarios where VMMs pass through real hardware to their VMs
for performance reasons, live migration becomes very challenging. Since the VMM
has no control over pass-through devices, it also has no knowledge about the state
the device operates in. This complicates obtaining the device state to restore it on
the target host. Another problem arises if the target host does not provide the same
type of hardware device the VM had access to on the source host. In other cases
the CPU model might slightly differ. The CPU of the target host might for example
not provide support for SIMD instructions which were in active use by the VM on
the source host.

Host-heterogenity therefore means for this project that both hosts which partic-
ipate in a live migration have the same architecture in general, but they differ in
important other parts. This thesis assumes that these parts can be peripheral PCI
devices which are different models or do not exist in the other host at all.

A live migration solution being able to move VMs employing pass-through hard-
ware devices obviously must be able to deal with this. To limit the complexity of
the project, only network interface cards as differing pass-through peripheral compo-
nents are regarded. These are involved in the most typical use case for pass-through
devices in virtualization: Virtual machines with need for very high network through-
put in data centers. As the platform in use implements faithful virtualization, guest
code van be left untouched.

3.2. Possible Solutions
Researchers have proposed different solutions for the underlying problem. Pan et
al. demonstrated how to migrate VMs using a real NIC by restoring its state. They
worked around the problem of migration-unfriendly hardware by identifying typical

21

3. Design

I/O operation sets which can be tracked on the source machine and then replayed on
the destination machine. Access to these needs to be trapped by the hypervisor or
may be logged by the guest driver itself. Consequently, the live migration host switch
phase must not occur during such an operation set, rendering it a critical section.
This constraint brings up the need for an additional synchronization mechanism
between guest and hypervisor. Another consequence is that guest code, at least
driver modules, has to be changed, which breaks with faithful virtualization. Read-
only registers like statistic registers are plainly virtualized in their approach. Their
CompSC framework providing all needed mechanisms for this general approach,
needs to be ported onto any new kind of hardware device model to be used with it.
Specific network interfaces appear to be rather simple to migrate due to a small set
of operation sets, but other hardware like e. g. graphic acceleration cards proved to
be very complex in this regard. However, one big advantage of this approach is that
the VM has nearly no NIC throughput degradation during migration. Migrating a
virtual machine to a host which can provide the guest with a pass-through NIC, but
only a different model, is still not possible. [29]

Two different solutions assuming migration-unfriendly hardware, use proxy drivers
in the guest operating system. Kadav et al. presented a shadow driver approach
in which they implemented a logical network device driver between the real NIC
driver and the networking stack of the guest operating system. This shadow driver
records all I/O needed to direct the NIC on the destination host into the state its
pendant at the source host was operating in. Triggered by an external migration
event, the shadow driver can react to a host change and replay the device state [19].
Although this solution does again change the guest operating system source code,
it does not touch the code of the device driver modules. Actually it is relatively
device agnostic. If the recorded I/O was translatable to a semantic level, it might
be possible to drive any NIC the target host provides. This idea might also be
applicable to the CompSC framework.

A similar solution which does not depend on any guest code change was presented
by Zhai et al. They also demonstrated the use of a proxy driver. Rather than
implementing a new shadow driver, they made use of the existing bonding driver
within the Linux kernel. The bonding driver is able to act as a logical NIC and
to switch between different real NIC drivers in the background. Equipped with
a real and a virtual NIC, a VM can be kept online after hot unplugging the real
NIC at the source host, bringing the VM into an easily migratable state [36]. An
interesting point about this solution is that it still works even if the target host may
provide a different NIC model or does not have any pass-through NIC available at all.
Furthermore, no knowledge about the individual NIC is required. The guest kernel
has to provide drivers for all possible NIC models and needs to be configured for
bonding device use. This work was committed to the Xen project. To actually use
this feature, administrators have to write their own pre- and postmigration scripts.

22

3.3. Design

3.3. Design
From all possible solutions, the ACPI hot plugging variant presented by Zhai et al.
[36] is chosen as the main inspiration for the underlying project design. The most
important reason for this choice is the constraint of faithful virtualization. Hot
plugging is the only way to live migrate pass-through devices without changing any
guest code. The bonding driver does already exist in the Linux kernel since version
2.0, which has been released more than a decade ago. Furthermore, this solution is
absolutely NIC-model agnostic. It will be possible to unplug a device from vendor
A and replug a device from vendor B. The bonding driver can easily handle such a
series of events.

Being hidden behind standardized hot plug events, both the virtualization and
live migration architecture do not have to be minded by the guest operating system
developers/administrators. In general, guest operating systems solely need to sup-
port ACPI hot plugging as well as providing a driver similar to the bonding driver
from the Linux kernel. Administrators can then just configure the system to be able
to make best use of a fast, sometimes disappearing, pass-through NIC and a slower,
but always available, virtualized NIC.

A downside of this approach is that the VM which shall be migrated will suffer
of network throughput degradation during migration, which might be a problem
in special use cases. On the contrary, it might be advantageous to throttle guest
networking anyway, since very high guest network traffic will inevitably increase the
writable working set (WWS). Other live migration solutions intentionally throttle
the network throughput of the guest to both reduce the WWS and to increase the
throughput for host packets [6].

The VMM application running in the NUL user space environment on top of the
NOVA microhypervisor is able to live migrate VMs which are not configured for
network use. For this reason, the virtual NIC model needs to be extended with
live migration support at first. This extends the area of deployment of the live
migration feature to VMs providing services over network. To be able to initiate
and control hot plugging features like real server hardware does, an ACPI controller
model is required. As the live migration procedure shall automatically deal with
pass-through devices, it needs to be extended to actually use these new features of
the VMM.

The next subsection describes the adapted live migration strategy. Thereafter, the
necessary changes to make the NIC model migratable are outlined. All needed inter-
faces and the range of responsibilities of the ACPI controller model are determined
at last.

3.3.1. The Adapted Live Migration Process
The existing live migration algorithm of course needs to be extended to support the
new migration strategy enabling it to handle pass-through devices. Figure 3.1 gives
a high level overview on the extensions to the migration procedure:

23

3. Design

⋆ negotiate mem send round = last send round ▽

△!
plug in

PCI

△!
plug out

PCI

△!
pause net

△!
unpause net

Figure 3.1.: Overview of Live Migration Process Phases and Needed Extensions

1. At first, the live migration procedure is initiated by the user or an algorithm.

2. The following negotiation stage allows to check if the destination host supports
pass-through migration by giving VMs access to such devices. The user or
an algorithm might accept the migration of specific VMs only if the other
side supports pass-through devices. The migration might then otherwise be
aborted to look for another destination host, for example. Decisions of this
kind should happen at this stage. However, if the migration was accepted after
negotiation by both sides, resources are claimed at this stage.

3. After negotiation, the whole guest memory range is synchronized between
source and target, which is done during multiple send rounds, depending on
the workload of the VM.

4. As the last stage on the source host, the VM is frozen to send remaining
memory differences as well as the states of all devices and the VCPU to the
destination host. PCI devices need to be unplugged at some point in time
before VM freeze. This is very important, because the guest OS has to partic-
ipate in the unplugging procedure. Choosing the right moment for unplugging
is not trivial, as will be explained later.

5. As the virtual network interface model that is still running continuously dirties
guest memory when receiving packets, it needs to be paused as well.

6. After transfering the remaining state data, the VM execution is resumed on
the destination host. The virtual network device can be unpaused at the same
time. Replugging an available passthrough-device can also happen immedi-
ately.

While the right moment of virtual NIC model unblocking and replugging of PCI-
devices is clear, especially the right moment for PCI unplugging is not. Since the
reaction time of the guest OS to the unplug event issued by the VMM has to be
respected, this cannot just be done synchronously before guest freeze. Therefore,

24

3.3. Design

PCI unplugging has to take place during the second last memory resend round at the
latest. The challenge occuring here is that it is hardly possible to determine which
memory resend round this might be. As the guest workload may change during
migration, it is also not possible to tell how many resend rounds will be needed.
The decision about when to freeze the VM to stop the round based resend strategy
is usually decided considering network throughput-rate and dirtying rate, which can
be calculated after any resend round.

However, a pass-through device used by the VM, driven to provide networking
with maximum throughput, might boldly increase the WWS. Early unplugging of
pass-through devices would force the VM to switch over to its leftover virtual NIC.
As soon as the guest uses its virtual NIC, the VMM gains control over the network
throughput-rate of the guest machine. Being generally slower, forced use of the
virtual NIC effectively lowers the size of the WWS. Furthermore, the VMM could
additionally throttle the virtual guest NIC to increase this effect. Another important
detail is the missing support for tracking page dirtying via DMA initiated by devices.
Unmapping all pass-through devices at the beginning of the migration process will
work around the problem of possibly undetected dirty memory regions which were
manipulated by DMA. Therefore, the beginning of the live migration procedure is
chosen as the moment in which pass-through devices shall be unplugged.

3.3.2. Virtual NIC Migration
As pass-through devices are considered unmigratable in this project, the guest has
to use a virtual NIC during the process of live migration. The virtual NIC model
provided by the underlying VMM represents an Intel 82576 VF network controller in
form of a PCI card. Live migration has been developed much later than the device
model, hence it did not support this feature, yet.

To support live migration, the state of the frozen device model has to be read
out and subsequently written back to its counterpart on the target machine. This
is usually trivial, because the state of a frozen model does not change and consists
of virtual registers which are all represented by easily readable memory fields in the
memory space of the VMM. In the underlying VMM application, the device model
is only accessed by a worker thread handling incoming network packets as well as
the VM accessing registers via I/O read and write operations. Blocking both the
VM and the network worker thread therefore leaves the device model in a frozen
state. VM blocking was already implemented. Network worker thread blocking just
involves a suiting kind of lock/semaphore, since I/O worker threads usually loop
over obtaining and processing portions of work. A model state which was read out
of a device model and then restored to another device model on a different host can
seamlessly continue its service after being released from freeze.

The special case of migrating a network device introduces another problem which
does not occur with non-network devices. While using the freshly reactivated virtual
NIC model for sending packets would not introduce any problems, receiving them
would: Packets would simply not be forwarded to the destination host on which the

25

3. Design

device now operates. They are still routed to the old host which processed them
before the migration took place. After migration, all network hosts and network
switches in the network need to be informed about the new route packets have to be
directed over. Advertising a new MAC address which an IPv4 address shall be bound
to is done with Address Resolution Protocol (ARP) packets. For IPv6 networks, a
similar mechanism called Neighbor Discovery Protocol (NDP) exists. This thesis
assumes IPv4 networks. ARP in combination with DHCP is generally used for IP
address negotiation for new hosts entering an IP network. To update the according
ARP table entry of all other hosts and switches, a gratuitous ARP packet has to
be sent. An important detail is that the MAC address does not change, although
gratuitous ARP is designed for this case. The packet the VMM has to send contains
information (guest IP and guest MAC address) the other hosts already know about.
Actually no ARP table entry will be changed by receiving hosts. However, network
switches will notice that this packet arrived via a different port than the port they
would expect a packet from, sent by this host. In consequence, all receiving switches
will update their internal routing tables. From this moment on, packets are correctly
routed to the migrated VM. A situation in which this mechanism does not work are
e. g. networks where administrators block such packets or configure switches to
ignore them. The motivation behind this is security, since gratuitous ARP can also
be used by third parties to reroute traffic in order to be able to monitor and/or even
manipulate it.

In this situation the VMM is sending ARP packets with both IP and MAC address
of the guest. This implies that the VMM has to obtain this information from within
the guest. An obvious way is inspecting packets the guest has sent out to the
network prior to its migration. As the guest is using a virtual NIC in the last
migration stage, the VMM has control over all guest packets and can easily extract
all needed information from them.

3.3.3. ACPI Controller Model
The VMM has to command the guest operating system to unplug pass-through
devices before migration, and to plug them in again after migration. Because of
the host-guest interaction this sounds very similar to paravirtualization. But in
fact, it is still faithful virtualization, because this particular interface was designed
without virtualization in mind. In order to be able to express these commands,
the VMM has to implement the hardware side of the corresponding ACPI interface.
The ACPI subsystem communicates with the operating system via tables located
in system memory and via interrupts combined with reads from and writes to I/O
registers. By referencing each other, the tables represent a tree structure. This tree
contains both static and dynamic parts. The static parts describe characteristics
of the system to the guest OS. To be able to drive more complex subsystems via
standardized interfaces, ACPI provides fields filled with bytecode within the dynamic
parts of the tables. Mainboard manufacturers use this to define a tree with multiple
scopes of system properties and device descriptions which can even contain program

26

3.3. Design

routines the OS can interpret and execute.
ACPI features in the underlying VMM have only been implemented to an extent

where a minimal set of ACPI tables provides the guest operating system with infor-
mation about the PCI configuration space, local APICs, and the power management
timer. To support ACPI hot plugging, general ACPI support has to be provided to
make Linux activate its ACPI mode at boot. Necessary for this to happen is the
existence of specific power management and general purpose event bit field register
sets. These fields can be configured to reside in programmed I/O or memory mapped
I/O space using the respective entries in the static ACPI tables. Furthermore, it
is necessary to provide a table entry informing about the interrupt number System
Control Interrupts (SCI) are assigned to, when issued by the ACPI controller.

As soon as the guest Linux kernel activated its ACPI mode, it can communicate
with the ACPI controller. Therefore this controller has to be hooked into the ex-
isting I/O bus to intercept reads and writes which are directed to ACPI related
registers. To support hot plugging, the controller needs to manage special internal
state register variables for this purpose. As the guest operating system has no a pri-
ori knowledge about hot plugging related registers, it needs to be educated about
them. This is achieved by byte-encoded structure and procedure descriptions in the
dynamic part of the ACPI system description.

In the end, the ACPI controller will just trigger general purpose events without
any knowledge about their semantics. The bytecode in the dynamic system descrip-
tion tables gives specific general purpose event bits the semantic meaning of hot
plugging, etc. Other virtualization solutions like Xen and Qemu are able to gen-
erate proper bytecode prior to booting a new VM. The tables are then configured
individually to allow hot plugging for the number of currently configured virtual
PCI ports. To not exceed the complexity of this prototype, the controller will be
able to deal with the hot plugging of only a fixed number of PCI slots.

The controller will then have to provide an interface for being triggered by the
migration code to initiate hot plug events. This interface has to simplify the mapping
of a PCI device, regardless of being a virtual one or a pass-through one, to the
respective event.

Furthermore, the final ACPI controller model will be a device model with register
states. Consequently, it needs to be embedded into the migration algorithm as both
part of it and part of the set of migratable device models.

This chapter illustrated possible solutions for the thesis problem and outlined
how ACPI hot plugging can be used to make VMs utilizing pass-through devices
migratable in a very versatile way. Necessary changes to the existing NIC device
model and the need for a new ACPI controller model were identified and their extent
specified. The next chapter shows how the design was implemented into the existing
VMM code base.

27

4. Implementation of
Pass-Through-Device Migration

After discussing possible design ideas in the last chapter, the implementation of
the design decisions made will now be described. At first the relevant parts of the
existing live migration architecture are illustrated to enhance the understanding of
how they were extended to support the new feature. Then the new subsystems are
explained one by one. These are the extensions to the virtual NIC model to make it
migratable, the ACPI controller model and all adaptions which had to be done on
the VMM. In the end explaining the Linux bonding driver module and how guest
systems can be configured to make use of the new VMM-feature, the perspective of
the guest is covered.

4.1. The Existing Live Migration Infrastructure
The underlying live migration feature is the product of an internship which was
finished just prior to the thesis project. Its most important parts are its memory
synchronization mechanism as well as the restore bus it mainly uses to cover device
model state transfer. This section will explain these in detail after describing the
general migration process.

Figure 4.1 gives a high level overview on the different phases of the live migration
algorithm as it existed prior to beginning the thesis project. The live migration
procedure is encapsulated in its own class, which is allocated in memory as soon
as the user commands the VMM to migrate its guest system to a given destination
host. Subsequently, source and destination host negotiate if the VMM configuration
in use can be started on the destination host. If starting an empty VMM with
this particular configuration succeeds, the destination host tells the source VMM on
which TCP port it is listening. Directly after connecting to the new listening VMM,
the source VMM initially transfers the whole guest memory state. Due to changes
of the memory state caused by the guest, the memory synchronization subsystem
tracks all dirty memory pages. After the first transfer, the VMM resends all dirty
pages. This is done roundwise with the aim to incrementally narrow down the list
of dirty memory pages towards the end. As soon as the rate with which the guest
dirties its memory rises above the network throughput-rate, the dirty memory list
size converged to its practical minimum. This is called the Writable Working Set
(WWS). At this stage, the guest is frozen to transfer the rest of dirty memory pages
together with all device model states. Guest execution is then continued on the

29

4. Implementation of Pass-Through-Device Migration

Migration Event

Negotiate VMM
config with des-

tination host

Send guest memory
to destination

TX rate > dirtying
rate?

yes

Send last mem pages,
virtual device states,

VCPU registers

Continue VM execu-
tion on destination

VM executing
on source host

VM Freeze

VM executing on
destination host

Figure 4.1.: Workflow of the Migration Algorithm

destination host. This memory synchronization strategy is also referred to as the
pre-copy strategy [6].

4.1.1. Memory Synchronization
Synchronizing the guest memory state between source VMM and destination VMM
while the guest is running, is the most important part of the live migration feature.
In order to know which parts of guest memory have been changed since some specific
point in time, the VMM has to be able to record write attempts of the guest system
to its memory. Recording write attempts is done by exploiting the extended paging
mechanism which is provided by the hardware.

By removing the write access right from a guest memory mapping in the extended
page table, it is mapped read-only within the guest. While this is transparent to
the guest operating system, it works like a trap when the guest tries to write to an
address in this mapping. In reaction to the then occuring VM exit, the NOVA kernel
will call the EPT Violation portal the VMM provides. This portal is comparable
to a usual page fault handler and is supposed to return the corresponding host-
virtual address for this guest-physical mapping. This mapping answer is encoded as
a Capability Range Descriptor (CRD) which contains information about the page
quantity and offset as well as access right bits. In NUL, the VMM generally maps
the guest memory range twice. The first mapping is located somewhere accessible

30

4.1. The Existing Live Migration Infrastructure

for the VMM, while the second mapping, which is also accessible by the guest, is
located at the lowest addresses.

Combined with the system calls nova_lookup and nova_revoke, this mechanism
can already be used to completely track the memory writing behavior of the guest
system. In the VMM, all OS-specific code is kept within the main VMM class source
file, which reduces the necessary effort for porting it to other operating systems.
Therefore, objects within the project which need to use system-specific functions,
have to call the main class which implements them in an OS-specific way. This has
to be extended by a function returning guest-write-enabled page ranges from the
guest memory space.

1 Crd next_dirty_region ()
2 {
3 static unsigned long pageptr = 0;
4 unsigned long oldptr = pageptr ;
5

6 // The number of pages the guest has
7 const unsigned physpages = _physsize >> 12;
8

9 /* If this was called for the first time ,
10 * the page tracking mechanism is now activated .
11 * The consequence of this is that all new mappings
12 * will be done in 4K page size granularity . */
13 _track_page_usage = true;
14

15 Crd reg = nova_lookup (Crd(pageptr , 0, DESC_MEM_ALL));
16

17 while (!(reg.attr () & DESC_RIGHT_W)) {
18 /* Fast - forward the pointer to the next
19 * RW - mapped page. */
20 pageptr = (pageptr + 1) % physpages ;
21 if (pageptr == oldptr)
22 /* We traversed the whole guest memory
23 * space once and did not find anything . */
24 return Crd (0);
25 reg = nova_lookup (Crd(pageptr , 0, DESC_MEM_ALL));
26 }
27

28 /* reg now describes a region which is guest - writable .
29 * This means that the guest wrote to it before and it
30 * is considered "dirty ". Make it read -only , so it is
31 * considered "clean" again and return this range. */
32 Crd host_map ((reg.base () + _physmem) >> 12, reg.order (),
33 DESC_RIGHT_W | DESC_TYPE_MEM);
34 nova_revoke (host_map , false);
35

36 pageptr += 1 << reg.order ();
37 if (pageptr >= physpages) pageptr = 0;
38

39 // The returned CRD contains size and offset of this mapping
40 return reg;

31

4. Implementation of Pass-Through-Device Migration

41 }

Listing 4.1: The Function Returning Dirty Guest Memory Ranges

Code Listing 4.1 shows the implemented code. The next_dirty_region function
is a state machine which takes no input variables. It maintains its own static memory
pointer in form of pageptr, which holds a page number. This page pointer is set
to the next RW-mapped page range offset on every call. The nova_lookup system
call returns a CRD describing the range which is mapped to this page offset. If no
mapping has been applied, the CRD is empty. Each call returns another RW page
range and remaps it read-only, so it will immediately trap the guest on its next write
attempt. Remapping is done by calling nova_revoke on a memory range with an
input CRD describing the range with all access bits to be removed. As soon as the
running page pointer exceeds the total range of guest page frames, it is wrapped
over and starts counting from address 0 again. If no page was written since the
last call, the function will recognize that it moved the page pointer once around the
range and returns an empty CRD. The _track_page_usage variable is set to tell
the EPT violation portal handler which maps memory for the guest, that it shall do
mappings in page size granularity.

Memory can also be dirtied by DMA. Monitoring memory accesses of this kind
is currently not implemented. This is not critical at this stage, since the only
devices which would use DMA are pass-through devices. These are unplugged during
migration before sending guest memory over network.

4.1.2. The Restore Bus
The DBus class1 plays a very central role in the software architecture of the under-
lying VMM. An instance of DBus represents a communication bus and keeps a list
of Device class instance pointers. Any object having access to such a DBus instance
can send messages over the bus to reach all connected objects. A central instance
of the Motherboard class maintains several DBus objects. Any object having access
to this Motherboard class instance can reach semantically bundled lists of devices.

On startup of the VMM, handlers for every type of command line parameter are
called. Device parameter handlers instantiate the respective device class and provide
it with a reference to the motherboard object. Equipped with this, devices can
connect themselves to the bus structures they make use of. This kind of architecture
tries to model the interconnect of hardware components like in physically existing
computers.

Device class derivatives have to additionally derive from the class StaticReceiver
if they need to be reachable via busses. StaticReceiver provides a type-agnostic
interface for being called from the bus user. The method to be called via the
bus structure which needs to be implemented is illustrated by an example in Code
Listing 4.2.

1This has nothing to do with the Desktop-Bus from the freedesktop.org project.

32

4.1. The Existing Live Migration Infrastructure

1 bool receive (MessageType &msg) {
2 if (msg.type != MessageType :: MY_TYPE) return false;
3

4 /* process msg */
5

6 return success ;
7 }

Listing 4.2: An Example Bus Receiver Method

With the migration feature, a new bus was introduced. The restore bus in com-
bination with messages of type MessageRestore is used for any migration-related
communication. Restore messages can be used to obtain or restore the state of a
device. They contain type fields which can be used to identify the message recipient.
Another field within this message type tells if the receiving device shall copy its state
into it or overwrite its state from it. Keeping device-dependent state serializing/de-
serializing code within each migratable object makes the rest of the migration code
more generic and device-agnostic.

Apart from serializing/deserializing device states, the restore bus can be used for
other purposes. One example is the VGA device model, which can also receive
restore messages at the beginning of a live migration at the receiver side to switch
to the correct video mode. This way the screen would not display garbage because
the frame buffer is already restored, while the VGA device model is still waiting for
its new state. The restore bus has proved to be a handy interface for generic pre-
and post-migration code execution.

Listing 4.3 shows a minimal migratable device model example which can be added
to the system at VMM launch. Its class inherits from the class StaticReceiver
to be able to receive messages in general. The parameter handler code macro in
Line 67 which is called during VMM initialization if the devicemodel command
line parameter was used, hooks it into the restore bus.

1 # include "nul/ motherboard .h"
2

3 class DeviceModel : public StaticReceiver < DeviceModel >
4 {
5 private :
6 mword _register_a ;
7 mword _register_b ;
8 /* ... */
9

10 bool _processed ; // Restore state
11

12 public :
13 /* ... */
14

15 bool receive (MessageRestore &msg)
16 {
17 /* How many bytes does the serialized device
18 * state consume ? */

33

4. Implementation of Pass-Through-Device Migration

19 const mword bytes =
20 reinterpret_cast <mword >(& _processed)
21 -reinterpret_cast <mword >(& _register_a);
22

23 /* The restart message is sent as a broadcast
24 * before reading / restoring the devices and
25 * collects the combined size of all serialized devices
26 * in its msg.bytes field. */
27 if (msg. devtype == MessageRestore :: RESTORE_RESTART) {
28 _processed = false;
29 msg.bytes += bytes + sizeof (msg);
30 return false;
31 }
32

33 /* Skip if this message is for another device type or
34 * this device was serialized already . */
35 if (msg. devtype != MessageRestore :: RESTORE_DEVICETYPE ||
36 _processed)
37 return false;
38

39 if (msg.write) { /* serialize and save */
40 msg.bytes = bytes;
41 /* The message sender guarantees that msg.space ,
42 * a byte field , is large enough . */
43 memcpy (msg.space ,
44 reinterpret_cast <void *>(& _register_a),
45 bytes);
46 }
47 else { /* deserialize and restore */
48 memcpy (reinterpret_cast <void *>(& _register_a),
49 msg.space , bytes);
50 }
51

52 /* The device is now processed and will ignore further
53 * messages with exception of the restart message . */
54 _processed = true;
55

56 return true;
57 }
58

59 DeviceModel (Motherboard &mb)
60 : BiosCommon (mb),
61 _register_a (0) , _register_b (0) , _processed (false)
62 { }
63 };
64

65 PARAM_HANDLER (devicemodel ,
66 " devicemodel - command line parameter to add a new devicemodel ")
67 {
68 DeviceModel * dev = new DeviceModel (mb);
69 /* ... */
70 mb. bus_restore .add(dev ,

34

4.2. Network Interface Migration

71 DeviceModel :: receive_static < MessageRestore >);
72 }

Listing 4.3: Minimal Migratable Example Device Model

4.2. Network Interface Migration

The existing virtual Intel 82576 VF network controller was not within the set of
migratable devices, yet. This controller provides Single Root I/O Virtualization
(SR-IOV), which means that the device is capable of multiplexing itself. Thus, the
device model imitates only a functional part of the device. Such a functional part,
i.e. a virtual function device, provides 2 receive and 2 send queues as well as a set
of memory mapped registers [16, 22]. In the model of this device function, these
are represented by plain memory ranges in the address space of the VMM and can
easily be read out and overwritten via the restore bus like any other device model.

Packet receiving is handled by a dedicated thread within the VMM. This network-
ing thread blocks on a semaphore which is counted up whenever a network packet
arrives. Raw network packets are processed in the NIC model with the scheduling
context of the network thread. This means that the device state as well as guest
memory may be changed from within the VMM even when the VM itself is frozen.
As guest memory and device states must remain unchanged during the freeze period,
the receiving of packets for the VM must be stopped. This is achieved with a new
type of MessageHostOp for the host operation bus. The host operation bus exists to
encapsulate any type of operating system specific code into the main class. For paus-
ing guest networking, a boolean variable called _network_paused was added to the
main class. The host operation of type MessageHostOp::OP_PAUSE_GUEST_NETWORK
simply toggles this bit. Whenever it is set to true, packets which are received for
the guest, are dropped. Dropping is not critical for the majority of use cases, since
higher networking layers like TCP will simply resend them.

After restore at the destination host, the NIC model can immediately be fed
with received packets again. For the freshly resumed VM it is fully functioning and
can send packets from the guest into the network like on the source host before.
The last problem to solve is that the other network participants as well as the
network switches have no knowledge of the migration of the guest. All network
switches continue routing packets to the source host. The VM will not receive
any packets at this time. After the first connection times out, hosts will begin to
send ARP discovery packets, which will solve the problem. Waiting until the first
timeout occurs would disrupt all network services on this VM. This condition is not
acceptable, because the host would then appear to be down although it is actually
running and able to continue servicing requests over network.

35

4. Implementation of Pass-Through-Device Migration

4.2.1. Keeping TCP Connections Alive with Gratuitous ARP
To accelerate the rediscovery of the moved VM in the network, the VMM can prop-
agate the new position of the VM to all network participants. Since this VM is
faithfully virtualized, it cannot do this itself due to the lack of knowledge about
its own virtualization, and hence also its physical movement. Just after the de-
vice restore and still before continuing VM execution, the VMM sends a so called
gratuitous ARP packet. Of course, gratuitous ARP does only work if the VM was
moved within the same broadcast domain. In IPv6 networks the Network Discovery
Protocol (NDP) would be used instead of ARP.

0 7 8 15 16 23 24 31 32 39 40 47

Target MAC

Source MAC
Eth type HW type Protocol type

HW addr. len Prot. addr. len Operation Source MAC ...
... Source MAC Source IP ...

... Source IP Target MAC ...
... Target MAC Target IP

Figure 4.2.: Diagram of a Raw ARP Packet

0 7 8 15 16 23 24 31 32 39 40 47

0xffffffffffff (Broadcast)

virtual NIC MAC
0x806 (ARP frame) 0x1 (Ethernet) 0x800 (IP)

0x6 0x4 0x1 (ARP request) virtual NIC MAC ...
... virtual NIC MAC Source IP ...

... Source IP 0x00000000

0x0000 Source IP

Figure 4.3.: Gratuitous ARP Packet Filled with Values

Figure 4.2 illustrates the content of an ARP packet and Figure 4.3 shows it filled
with the values it is actually sent out with. An ARP packet qualifies as gratuitous
if the following conditions apply:

36

4.3. ACPI Controller Model and Hot Plugging

∙ The Ethernet target field is the broadcast MAC address.

∙ The operation field is 0x1, which stands for ARP request.

∙ The ARP target field is zero.

∙ Both source and target IP address fields are the IP address of the VM.

A gratuitous ARP packet represents a request like “What is the right MAC address
for this particular IP address?”. When this ARP packet was sent by the destination
VMM, the NIC model within the source VMM would be the only device to answer
this ARP request. However, it is paused at this stage. No other host has this IP
address and thus no answer is received. All hosts and switches update their ARP
tables. From this moment packets are correctly routed to this destination again.
TCP connections will immediately be back to service. Depending on how long the
downtime of the VM lasted, this might stay unnoticed by users of network services.

To be able to send such a packet, the NIC model additionally needs to know the
IP address of the guest. Furthermore, it needs the MAC address the guest uses, as
this is not necessarily the MAC address the NIC model was assigned to. Since the
VMM forwards all packets from the NIC model to the host NIC driver, it can inspect
guest packets and extract both the IP and MAC addresses. Extracting these from
packets requires that the guest was already using the network before its migration.
If it has not sent any packets up to this moment, it will also not have any standing
TCP connections which need to be preserved. The VMM does not need to send any
gratuitous ARP packet in this case.

The ARP protocol does not use any authentication. This enables network par-
ticipants to take over any IP address at any time, which is also known as ARP
spoofing. Administrators who have the responsibility to keep computer networks
secure, will often consider the use of this mechanism by third parties an attack and
try to prevent this scenario. Common countermeasures are fixed ARP table settings
on secured hosts, or network switches allowing MAC address changes only when a
cable is also physically replugged, etc. Migrating the IP address will not work in
such networks.

4.3. ACPI Controller Model and Hot Plugging
Just before the guest operating system can boot, the virtual BIOS of the VMM
prepares and initializes the system. One part of this initialization code is writing
ACPI tables into the guest memory. Since ACPI was only needed to that extent
that the guest OS can inform itself about the PCI Express configuration space and
LAPIC geometry, more tables had to be added first.

Figure 4.4 illustrates the organization of ACPI tables in a tree structure. The
root of the tree is the Root System Description Pointer (RSDP). A booting guest
OS usually scans for the magic string signature "RSDP" within the first KB of the

37

4. Implementation of Pass-Through-Device Migration

RSDP
*ptr
...

RSDT
*ptr
...

FADT
*firm
*dsdt
*blk
...

FACS
Wake Vector
Shared Lock
...

GPx_BLK
...PM2_BLK

...PM1_BLK
...

DSDT
AML Block
AML Block
...

OS
ACPI
Driver

OEM Specific
...

Figure 4.4.: ACPI Table Structure as Found in Memory at Boot

Extended BIOS Data Area (EBDA) and within the BIOS read-only memory space
between the addresses 0xE0000 and 0xFFFFF. The memory structure positioned
just after this magic string contains a pointer to the Root System Description Table
(RSDT), which in turn contains a pointer to the Fixed ACPI Description Table.
The by then yet missing parts were the Firmware ACPI Control Structure table
(FACS) and an entry within the FADT pointing to it. Also still missing were the
Power Management (PM) and General Purpose Event (GPE) I/O register sets.
Entries denoting address space, address, and size for the status, enable, and control
registers of the so called PM1a and PM1b register blocks needed to be added to the
FADT. The same applied to the status and enable registers of the GPE0 and GPE1
register blocks.

Adding new ACPI tables to the existing structures can be done via the discovery
bus. This bus accepts messages of type MessageDiscovery, which transport a string
identifier of the table to manipulate, a byte offset, a field length and the value to be
written into this field. Any device model which needs to store information in memory
before guest boot can be attached to the discovery bus. The virtual BIOS reset
routine of the VMM sends an initial discovery message which triggers all connected
device models to answer with messages to populate the memory with their table
information. Thus, the discovery bus is the first bus the ACPI controller model
needs to be connected to. Code Listing 4.4 shows the code with the necessary
discovery message answers to bring the FADT into a state which is accepted by

38

4.3. ACPI Controller Model and Hot Plugging

the Linux kernel. The helper method discovery_write_dw takes an identification
string for the target table, a byte offset within it and a double word sized value and
transforms it into a MessageDiscovery which is then sent over the bus. "FACP" is
the identification string of the FADT.

The last three discovery write lines in the code listing have not been mentioned,
yet. Newer systems leave these values in the FADT empty, which means that the
hardware is always in ACPI mode rather than System Management Mode (SMM). If
the SMI_CMD field is set to a port value and the ACPI_ENABLE as well as ACPI_DISABLE
fields contain magic key-values, the guest OS will recognize this and try to switch
the hardware from SMM to ACPI by writing the ACPI_ENABLE value to the SMI_CMD
I/O port. The hardware has then to set the SCI_EN bit within the PM1a control
register. This bit is the indicator for the guest OS that the transition from SMM to
ACPI was successful. The ACPI controller model can then safely assume that the
guest kernel activated its ACPI module.

1 bool receive (MessageDiscovery &msg) {
2 if (msg.type != MessageDiscovery :: DISCOVERY) return false;
3

4 /* The following FADT entries will tell the guest kernel
5 * how to interact with the system when receiving
6 * System Control Interrupts (SCI).
7 * Only the GPE part is important for hot plugging , but
8 * all the PM -stuff is mandatory for event management
9 * to work.

10 */
11 discovery_write_dw ("FACP", 56, PORT_PM1A_EVENT_BLK);
12 discovery_write_dw ("FACP", 60, PORT_PM1B_EVENT_BLK);
13 discovery_write_dw ("FACP", 64, PORT_PM1A_CONTROL);
14 discovery_write_dw ("FACP", 68, PORT_PM1B_CONTROL);
15 discovery_write_dw ("FACP", 88, PM1_EVT_LEN , 1);
16 discovery_write_dw ("FACP", 89, PM1_CNT_LEN , 1);
17

18 discovery_write_dw ("FACP", 80, PORT_GPE0_STATUS , 4); // GPE0_BLK
19 discovery_write_dw ("FACP", 84, PORT_GPE1_STATUS , 4); // GPE1_BLK
20

21 discovery_write_dw ("FACP", 92, 4, 1); // GPE0_BLK_LEN
22 discovery_write_dw ("FACP", 93, 4, 1); // GPE1_BLK_LEN
23 discovery_write_dw ("FACP", 94, 16, 1); // GPE1_BASE (offset)
24

25 /* This is used at boot once. Linux will write
26 * CMD_ACPI_ENABLE via system IO using port PORT_SMI_CMD
27 * to tell the mainboard it wants to use ACPI.
28 * If CMD_ACPI_ENABLE was defined as 0x00 , the guest kernel
29 * would think that ACPI was always on. Therefore , this is
30 * optional and one could just erase the next three lines.
31 */
32 discovery_write_dw ("FACP", 48, PORT_SMI_CMD);
33 discovery_write_dw ("FACP", 52, CMD_ACPI_ENABLE , 1);
34 discovery_write_dw ("FACP", 53, CMD_ACPI_DISABLE , 1);
35

39

4. Implementation of Pass-Through-Device Migration

36 return true;
37 }

Listing 4.4: MessageDiscovery Receiver Method of the Implemented ACPI
Controller

The PM1a and PM1b registers are not needed for hot plugging, hence they remain
mainly unused in this case. Linux demands their existence before activating its ACPI
module because of the SCI_EN bit within the PM1a register and the fact that SCI
handling involves reading the PM and GPE registers to determine the event type
which caused the interrupt.

To make I/O reads and writes from and to these registers within the ACPI con-
troller model actually work, the controller class code needs to be connected to the vir-
tual I/O bus of the VMM. I/O reads from the guest are processed by a MessageIOIn
receive handler. All named registers and all registers to follow are read without any
side effects. Thus, the I/O read handler just returns the register values, which are
32 bit unsigned integer variables.

1 bool receive (MessageIOOut &msg) {
2 switch (msg.port) {
3 case PORT_SMI_CMD :
4 /* During boot , the guest kernel checks PORT_SMI_CMD
5 * in the ACPI FADT table. If SCI_EN is not set ,
6 * the system is in legacy mode. Hence , it sends the
7 * CMD_ACPI_ENABLE cmd it got from the FADT again to
8 * this port and then polls for SCI_EN until it is set.
9 * ACPI is then officially active . */

10 if (msg.value == CMD_ACPI_ENABLE) {
11 _pm1a_control |= 1U; // Setting SCI_EN bit
12 }
13 else if (msg.value == CMD_ACPI_DISABLE) {
14 _pm1a_control &= ~1U;
15 }
16 return true;
17

18 /* Usual write - registers as well as
19 * write -clear registers are handled here.
20 * ...
21 */
22 }
23

24 /* Deassert this IRQ if all enabled events were cleared
25 * by the guest. This interrupt is thrown again otherwise . */
26 if (!(_pm1a_status & _pm1a_enable) &&
27 !(_pm1b_status & _pm1b_enable) &&
28 !(_gpe0_sts & _gpe0_en) &&
29 !(_gpe1_sts & _gpe1_en)) {
30 MessageIrqLines msg(MessageIrq :: DEASSERT_IRQ , 9);
31 _mb. bus_irqlines .send(msg);
32 }
33

40

4.3. ACPI Controller Model and Hot Plugging

34 return false;
35 }

Listing 4.5: I/O Write Receive Method of the Implemented ACPI Controller

Code Listing 4.5 shows the implementation of the I/O write handler. Code han-
dling read-write and write-clear registers is cut out for this listing. Lines 3 to 15
show the code which handles the transition from SMM to ACPI mode and back.
The code lines from 26 to 32 are interesting in terms of interrupt delivery. Asserting
an SCI interrupt to notify the guest OS about PM or GPE events is done by sending
a MessageIrq over the IRQ bus of the VMM. This interrupt has to be deasserted
explicitly after the guest has processed all events. Checking if the guest has done
this, is achieved by logically anding each status register with its companion enable
register.

Being connected to the discovery and I/O in and out busses, the ACPI controller
model is able to communicate with a Linux guest to make it setup its ACPI subsys-
tem. This is the foundation for further development of hot plugging features.

4.3.1. Adding Hot Plugging
Although both the VMM and guest OS participate in hot plugging mechanisms,
only VMM code had to be changed. These code changes can be split into two parts:
The first part are extensions to the ACPI controller model in the VMM to enable
it to play the host role of the hot plug workflow. More complex is the second part,
which consists of an AML block added to another new ACPI table, the DSDT.

ACPI controller part

Beginning with the ACPI controller model part, an extension to trigger the initial hot
plug event is needed. All hot plug related events, which are unplug PCI card x and
replug PCI card x, are wired to the same GPE. Listing 4.6 shows the implemented
method to trigger a GPE. Both GPE status registers share a bitmap which can be
used to set 16 different general purpose events. After setting the respective GPE
bit, it is checked if it was disabled by the guest. If not, an SCI is triggered to finally
notify the guest.

1 void trigger_gpe (unsigned event_nr)
2 {
3 // Activate this event in the appropriate register
4 _gpe0_sts |= 0x00ff & (1 << event_nr);
5 _gpe1_sts |= (0 xff00 & (1 << event_nr)) >> 8;
6

7 // If this event is masked by the guest , then just ignore it
8 if ((0 == _gpe0_sts & _gpe0_en) || (0 == _gpe1_sts & _gpe1_en))
9 return ;

10

11 // Send the guest an SCI
12 MessageIrqLines msg(MessageIrq :: ASSERT_IRQ , 9);

41

4. Implementation of Pass-Through-Device Migration

13 _mb. bus_irqlines .send(msg);
14 }

Listing 4.6: ACPI Controller Method to Trigger a GPE

Triggering a hot plug event alone, which can mean that both a device is to be
unplugged or it was replugged, is not sufficient, yet. To enable the guest OS to
inform itself in its ACPI event handler about what exactly happened, two new
registers are added: PCIU and PCID. When a bit is set in PCID (D as in Detach),
this tells the guest that the PCI slot at the offset of the bit has to be unplugged.
PCIU (U as in Update) works analogously, but its bits represent freshly replugged
PCI slots. To raise such an event, a new ACPI event bus was added. Other modules
within the VMM can now send MessageAcpiEvent messages which denote which
virtual PCI slot has to be replugged or unplugged.

Additionally, a third new register is added. B0EJ acts as a write-clear register.
Whenever the guest writes a bit in it, the VMM interprets this as “driver unloaded,
please power off this slot”, with the bit position indicating the slot number.

DSDT part

ACPI provides an elegant method to make guest systems react correctly to hardware-
defined events: the Differentiated System Description Table (DSDT). DSDT entries
contain ACPI Markup Language (AML) blocks of arbitrary size which are compiled
from hand written ACPI Source Language (ASL) code. ASL code is compiled to
AML using the Intel iASL compiler [18]. After compiling, the code is represented
as a static C string within a C header file, which can easily be included into the
project. Code copying the whole AML block string into the DSDT is embedded into
the virtual BIOS restart procedure which also initializes all the other ACPI tables.

Code Listing A.1 on page 65 shows the ASL source code of the whole AML
block in use. The Scope(_SB) {...} block takes about two thirds of ASL code.
It contains legacy PCI IRQ routing information as well as information about bus
enumeration, usable I/O ports and memory ranges for mapping PCI Base Address
Registers (BAR). Linux usually autodiscovers these values at boot. For hot plug-
ging they are of importance again, because the hot plugging driver of Linux, which
reconfigures new PCI devices after plug in, does not do the same.

Of direct relevance for the hot plugging workflow is the Scope(_SB.PCI0) {...}
block beginning at Line 230. For every PCI slot, it defines a Device (Sxx) {...}
block (with xx being the slot number) which defines address, PCI slot number and
an eject callback procedure. Furthermore, it defines three procedures:

PCNF() This method is called by the GPE handler triggered by the VMM. It reads
the PCIU and PCID registers and calls the PCNT() procedure for every bit which
is set on the according register.

PCNT(device, event) Dispatching by the device variable, this method calls
Notify(Sxx, event) on the corresponding Sxx PCI slot object. event can

42

4.3. ACPI Controller Model and Hot Plugging

have the value 1 which stands for “device was plugged in” and 3 which means
“device eject requested”. In reaction to the Notify call, the appropriate han-
dler routine within the Linux kernel is started.

PCEJ(device) The _EJ0 callback function of every device calls this method with its
own device slot number. It writes the value 1 << device to the B0EJ register.
The VMM then knows that the device unplug is complete.

The last code block, Scope (_GPE) {...} binds GPE bit 1 to a PCNF() call.

Hot plugging workflow

ACPI Model
Hotplug Controller

GPE Field

Linux Guest
ACPI Module

Device Driver

DSDT Methods
PCNF()

_EJ0()

_STA()

Migration Module
1. unplug

2. assert

3. SCI

4. check

5. call

6. unload

7. call back

which device?

unplug confirmed!

Figure 4.5.: High Level Overview of the ACPI Unplug Procedure

Using the example of the unplug event, the interaction between ACPI controller
model and guest system shall be illustrated. See also Figure 4.5:

1. The unplug event can simply be triggered by an ACPI event message from
within the VMM:

1 MessageAcpiEvent msg(MessageAcpiEvent :: ACPI_EVENT_HOT_UNPLUG ,
slot_number);

2 _mb. bus_acpi_event .send(msg);

2. After receiving the message, the ACPI controller model sets the corresponding
bit in its PCID register and triggers GPE 1.

43

4. Implementation of Pass-Through-Device Migration

3. The guest OS receives an interrupt and executes its SCI handler, which looks
into the PM and GPE registers to determine the event that occured.

4. In reaction to the GPE bit which was set, the _E01 handler method from
within the AML block in the DSDT is called, which in turn calls PCNF().

5. The PCNF() method uses the PCIU and PCID registers to distinguish which
devices need to be unplugged or were replugged. It then calls PCNT() on the
devices with the respective event type, which sends a notification to the guest
OS.

6. Linux as the guest OS receives the notification in form of a notification handler
call, which it hooked into its internal ACPI tree before. In reaction to this
call, the device is unloaded. The BARs of the PCI device are unmapped and
interrupt routes freed.

7. To tell the mainboard that it can power the PCI device off, Linux will call the
_EJ0() callback method of the device slot, which in turn calls PCEJ(<slot_nr>).
PCEJ() writes the same bit which was set in the PCID register back to the B0EJ
register. The VMM intercepts this write and marks the unplug event as pro-
cessed.

Replugging works analogously, but is less complicated. The VMM sends a message
with the MessageAcpiEvent::ACPI_EVENT_HOT_REPLUG parameter. Until Step 4,
the workflow does not differ, but PCNT() will then be called with event type 1. The
event type 1 handler for device hot plugging within the Linux kernel initializes the
PCI slot and loads the device driver without notifying the VMM back. Consequently,
as the guest reports back after unloading its device driver, unplugging a device can
easily be implemented as a synchronous function. Due to the lack of reporting back
by the guest, this is not as easy with plugging a device in. However, at this stage
this is not a limitation.

4.3.2. Triggering Hot Plug Events During Live Migration
Being able to hot plug and unplug devices during VM runtime, this feature can
finally be embedded into the existing live migration algorithm. The software archi-
tecture of the VMM makes integrating this feature very easy: For every PCI device
which is mapped directly into the VM, an instance of the class DirectPciDevice
is added to the set of device model objects within the VMM. This device model is
not a model as such, since it does not model a device. It merely sets up the guest
PCI configuration space, handles interrupt installation, DMA remapping, etc. How-
ever, being added to the VMM like any other device model, it can be hooked into
the restore bus. When called by the restore bus during the migration procedure,
it would not serialize and deserialize its state before/after host switch, like other
device models. Instead, it would trigger its own hot unplug/replug event in the

44

4.3. ACPI Controller Model and Hot Plugging

ACPI controller. Code Listing 4.7 shows how the device identifies itself and sends
the ACPI controller the respective hot plugging event. msg.write is false for device
state retrieval before the host switch and true in the restore phase at the destination
host.

1 bool receive (MessageRestore &msg)
2 {
3 if (msg. devtype != MessageRestore :: PCI_PLUG) return false;
4

5 unsigned slot = (_guestbdf >> 3) & 0x1f;
6

7 MessageAcpiEvent amsg(
8 msg.write ?
9 MessageAcpiEvent :: ACPI_EVENT_HOT_REPLUG :

10 MessageAcpiEvent :: ACPI_EVENT_HOT_UNPLUG ,
11 slot);
12

13 _mb. bus_acpi_event .send(amsg);
14 return true;
15 }

Listing 4.7: MessageRestore Handler of the Helper Model of Directly Mapped PCI
Devices

The restore bus is used for device state collection during the freeze round on the
source host. On the destination host it is used for writing back all device states
shortly before resuming the VM. The point in time during which device states are
written back is also perfect for hot replugging pass-through NICs. Hot unplugging
them in the device state collection phase, however, is not possible this way, because
this cannot be done with a frozen VM. As the VM has to participate in unplugging
PCI devices, the unplug message has to be sent over the restore bus earlier.

Choosing the right moment for unplugging pass-through NICs before migration
is challenging for different reasons. The first reason is that unplugging a device is
not finished until the guest writes back success into the B0EJ register of the ACPI
controller. Measurements on the development machine have shown that this takes
about 200 ms. Depending on the number of devices which need to be unplugged and
on the guest OS version, etc., this number might vary. Furthermore, it is problematic
to issue the unplug event in the last memory resend round before guest freeze, since it
is never clear if the current round is the last round. Another circumstance is the fact
that the existing live migration solution does not support guest memory tracking
to detect page dirtying by DMA. As the pass-through NIC uses DMA, memory
changes introduced by it during live migration might possibly stay unrefreshed on
the destination host.

The actual implementation unplugs pass-through devices right before sending the
first guest state byte at the beginning of the migration procedure. This solution
both circumvents the missing DMA page tracking and effectively lowers the WWS
for VMs with network-heavy workloads.

45

4. Implementation of Pass-Through-Device Migration

4.4. Guest Configuration with ACPI and Bonded
NICs

The VMM now supports unplugging PCI devices, using the ACPI interface com-
modity operating systems support. To support general PCI hot plugging, the Linux
kernel does not need any patches. It merely needs to be reconfigured if the VM is
not using a stock kernel from any distribution, where this feature is usually already
activated. This section describes how the guest system used for this project was
changed. The distribution in use is the highly configurable Buildroot2. Buildroot
is configured to produce a Linux kernel binary together with a complete root file
system image.

Listing 4.8 shows the menu points of Linux’s make menuconfig configuration
menu, which have to be activated to support ACPI PCI hot plugging.

1 -> Power management and ACPI options
2 - ACPI Support [y]
3 -> Bus options (PCI etc .)
4 -> Support for PCI Hotplug [y]
5 - ACPI PCI Hotplug driver [y]

Listing 4.8: Linux Menuconfig Entries for ACPI Hot Plugging of PCI Devices

The Linux kernel will recognize the hot plug ability of the virtual system at boot,
and load and initialize its hot plug driver. A VM configured like this smoothly
survives live migration. However, this does not account for network connections
of user space applications utilizing the fast pass-through NIC. If it is unplugged
while in use, the guest kernel has to inevitably kill all connections which depend on
it. This scenario is similar to the use case of servers being equipped with multiple
NICs for redundancy. Linux provides the bonding driver for this purpose, which
was introduced by Donald Becker in Linux version 2.0 and is still being actively
maintained.

With the bonding driver, the administrator can add logical NICs to the system.
Having added such a logical NIC, multiple NICs can be enslaved to it. Figure 4.6
shows the internal network topology in a high level overview of all software stacks.
NIC A is multiplexed by the host for use by host apps as well as virtual NIC models
of VMs. To the Linux guest, it is visible as eth0. NIC B is directly passed through
to the VM, visible by the guest system as eth1. Both are enslaved to the logical
NIC bond0, which acts as the NIC, promised to be always logically connected to
the network. The bond0 device can be configured to combine its backend NICs in
various ways: One obvious possibility is to aggregate all NICs to make them work
together to sum up their throughput-rates. This can be done in different flavors,
like static or dynamic load balancing, etc. The other possibility is the active-backup
setting, where only one NIC is used at a time. Whenever this NIC fails, the bonding

2Buildroot is a set of makefiles and scripts which can be used to configure and compile compact
GNU/Linux systems. http://buildroot.uclibc.org

46

http://buildroot.uclibc.org

4.4. Guest Configuration with ACPI and Bonded NICs

Physical Host

A

B

Network
Switch

to LAN

𝜎0
IP Mgmt App App App App

VMM

VM

Migration Module

eth0

eth1

bond0

Guest
TCP/IP

NIC
model

Figure 4.6.: Network Topology Inside the Virtualization Environment

driver will select another NIC from the set of enslaved devices to be the one being
actively used. To advertise the NIC change to the network, the bonding driver
automatically sends out gratuitous ARP packets from the active device. This is
obviously the right choice for the scenario at hand. [8]

4.4.1. Configuring the Bonding Driver
To make the guest system operate the bonding driver in active-backup mode, the
guest kernel has to be recompiled with bonding module support. During system
boot, scripts need to bring up the bonding device into the respective state. Live
migration introduces a third necessity when hot plugging a new NIC into the guest
system, as the bonding driver does no automatic enslaving of new devices. An
automatically executed script needs to do this job.

47

4. Implementation of Pass-Through-Device Migration

Kernel Modules

The bonding driver is another Linux kernel module which needs to be activated in the
kernel. Listing 4.9 shows the menu entry which has to be activated in Linux’s menu-
config configuration menu. The driver can be built as a module named bonding, or
embedded into the kernel binary.

1 -> Device Drivers
2 -> Network device support
3 -> Network core driver support [y]
4 - Bonding driver support [y]

Listing 4.9: Linux Menuconfig Entries for the Bonding Driver

After recompile and boot of the kernel, the system will be able to provide bonding
devices, but they still need to be configured. To enslave NICs to a network bond,
another tool called ifenslave was introduced with the bonding driver. Its source
code resides in the Documentation/networking/ directory within the Linux kernel
source code repository. Compiling is done via gcc ifenslave.c -o ifenslave. It
should then be moved into a system folder for binaries to be accesible for use.

Configuration Files

Setting up network connections in a late stage of the system boot of a GNU/Linux
OS is usually done by SystemV-scripts. In this case, /etc/init.d/S40network sets
up the network connections of the guest system. To initialize the bonding device
ahead of the network configuration script, another init script was added to the init
folder.

Listing 4.10 shows this script. In Line 7, a variable slaves is set to contain a
list of all NICs to be enslaved. In this case, all NICs beginning with the name eth
will be enslaved. The 1, which is echoed in Line 11 into the mode file of the virtual
sys file system tree of the bonding device, stands for the active-backup mode. In
Line 15, the eth0 device is defined as primary bonding device. This is the pass-
through NIC. The bonding device is then finally set up and devices are enslaved to
it in Lines 21 and 22. When the network initialization script is executed after this,
it can successfully bring networking up.

Another configuration step which has proven to be cricital resides in Line 19 of
the script. The Media Independent Interface (MII) monitoring frequency parameter
is set to 100 ms. Hot unplugging of the active NIC alone does not raise any kind of
event within the bonding driver. Without MII monitoring the network connection
would just appear dead without any consequences. Thus the MII monitor has to
be set to some polling frequency. The bonding driver will then be alerted in the
next polling interval when the NIC appears dead and eventually activate the backup
NIC.

1 #!/ bin/sh
2 # file: /etc/init.d/ S30bonding
3

48

4.4. Guest Configuration with ACPI and Bonded NICs

4 case "$1" in
5 start)
6 echo " Configuring bonding device ..."
7 slaves =$(/ sbin/ ifconfig -a | \
8 awk ’/^ eth /{ gsub(":","",$1); print $1;}’)
9

10 # Set bonding mode to active - backup
11 echo 1 > /sys/class/net/bond0/ bonding /mode
12

13 # Primary slave (the real NIC) which should be
14 # used whenever possible
15 echo eth0 > /sys/class/net/bond0/ bonding / primary
16

17 # Check for interface link every 100 ms. If not
18 # set , active_slave is never switched if link is lost
19 echo 100 > /sys/class/net/bond0/ bonding / miimon
20

21 /sbin/ ifconfig bond0 up
22 /sbin/ ifenslave bond0 $slaves
23 ;;
24 stop)
25 echo -n " Removing bonding device ..."
26 /sbin/ ifconfig bond0 down
27 ;;
28 restart | reload)
29 "$0" stop
30 "$0" start
31 ;;
32 *)
33 echo "Usage: $0 {start|stop| restart }"
34 exit 1
35 esac
36

37 exit $?

Listing 4.10: SystemV Init Script Setting Up the NIC Bond

On GNU/Linux distributions which follow the Debian style of network configura-
tion, the network setup looks even simpler. In this case, the /etc/network/interfaces
file has to be adapted as shown in Listing 4.11.

1 # file: /etc/ network / interfaces
2

3 # ... loopback , etc. left out
4

5 auto eth0
6 iface eth0 inet manual
7 bond - master bond0
8

9 auto eth1
10 iface eth1 inet manual
11 bond - master bond0
12

49

4. Implementation of Pass-Through-Device Migration

13 auto bond0
14 iface bond0 inet dhcp
15 bond - slaves eth0 eth1
16 bond - primary eth0 eth1
17 bond -mode active - backup
18 bond - miimon 100

Listing 4.11: The Interfaces File as it Would Look Like on Debian Derivatives

Being configured this way, the booted Linux system will successfully bring up the
bonding device, enslave eth0 (pass-through NIC) as primary and eth1 (virtual NIC)
as secondary backend NICs. eth1 will stay inactive until eth0 fails or is unplugged.

Re-Bonding of Hot Plugged Devices

When deployed to practical live migration use, the current configuration will fail
at the point at which a new pass-through NIC is hot plugged into the VM on the
destination host. Neither the hot plug driver, nor the bonding driver automatically
reenslave NICs to the bond. After unplugging eth0, the pool of NICs the bond0
device can switch to is reduced to the virtual NIC. The freshly replugged eth0,
which is a completely new NIC to the system, needs to be added to the bond.

Linux provides event hooks which can be used to launch scripts reacting to certain
events. The udev utility, which is already used to populate the /dev/ folder at boot,
can be exploited versatilely for all kinds of device manipulation. It handles all user
space actions when adding or removing devices, including firmware load. To make
use of udev at this point, it is necessary to write a udev rule. Upon any unplug,
replug, driver load/unload event, udev will look for matching rules in rules files
in the /etc/udev/rules.d folder. If a rule applies, all actions attached to it are
executed. Listing 4.12 shows the necessary rule for live migration. The event the
rule has to match is the add event, which occurs after hot plugging a new device into
the running system. The SUBSYSTEM specifier tells that this rule shall only apply to
add-events which concern networking devices. After filtering out all other irrelevant
events, udev would then launch the command specified in RUN. In this case, it will
start the reenslave script, equipped with environment variables like $INTERFACE,
carrying additional information. The reenslave script in Listing 4.13 makes sure
that only devices with a name beginning with eth are enslaved to the bond.

1 # file: /etc/udev/rules.d/10- local.rules
2

3 ACTION =="add", SUBSYSTEM =="net", RUN="/bin/sh /bin/ reenslave .sh"

Listing 4.12: Udev Rule Which Matches to All Freshly Plugged in NICs

1 #!/ bin/sh
2 # file: /bin/ reenslave .sh
3

4 if [[" $INTERFACE " =~ ^eth]]; then
5 /sbin/ ifenslave bond0 $INTERFACE

50

4.4. Guest Configuration with ACPI and Bonded NICs

6 fi

Listing 4.13: The Reenslave Bash Script

Based on the design decisions from the previous chapter, this chapter has shown
how to implement native ACPI hot plugging for guest systems of the underlying
VMM. The existing live migration feature has been extended to support hot plugging
pass-through devices during live migration. As it could be left largely unmodified,
it has proven to be easily extensible. Guest systems with pass-through NICs do not
automatically make use of the new possibility for network connection preserving.
However, it has been shown using the example of GNU/Linux that they can easily
be configured to make use of the new feature and do not need any code changes.
Furthermore, the solution at hand is very robust and versatile as it does automati-
cally handle the cases of different pass-through NIC models or missing pass-through
NICs at the destination host.

51

5. Evaluation
Most important performance numbers of live migration algorithms are the overall
migration duration, service degradation during the migration process, and the to-
tal downtime of the VM during host switch at the end of its migration. All these
numbers can be measured by two experiments. The next two sections provide mea-
surements of the network latency and throughput of a virtual machine during live
migration. Both experiments were carried out with a VM running i686 Linux with
kernel version 3.10.0-rc4. The VM was configured with 128 MB memory and two
NICs: a virtual model of a virtual function device of the Intel 82576 network con-
troller and a physical pass-through PCI card with the same controller model. Both
measurements were performed with the packet MTU set to 1500.

5.1. Network Latency During Migration
A small application named pingpong was developed to do the same like usual ping
pong tests of all kinds of communication libraries. The application can both act
as network client and network server. It is started as a network server on the VM,
listening on a TCP socket. On another host in the same network, it is started as a
client and connects to the server listening on the VM. The client does then send a
few bytes over TCP and the server will immediately echo them back. After receiving
its message back, the client prints out the time it took for sending and receiving
again. This is done in a loop.

The experiment flow is as follows: A VM is started on host A. Host B in the same
network is ready to accept a migration request from the VM running on host A.
Pingpong is started as a server on the VM. On a third host, pingpong is connected as
client to the VM pingpong service. Its output is logged to a file for later processing.
The next step is the initialization of the live migration procedure between host A
and B. After the migration has succeeded, the pingpong measurement is stopped.
While this is a common way to measure live migration algorithm performance, the
specialty of this scenario is the VM configuration: Host A and B both give the VM
access to a pass-through NIC.

Figure 5.1 shows the expected output graph of a fictional live migration with
pass-through devices. The pingpong application measurement starts at second 0.
This point in time lies somewhere in the lifetime of the VM. About 20 seconds after
starting the pingpong measurement, the actual migration is initiated. At this point
the pass-through NIC is hot unplugged and the service latency goes up, because the
virtual NIC is slower. Switching between the real and the virtual NIC should be

53

5. Evaluation

done without any additional latency. At second 40, the migration is finished and
host B finally continues the execution of the VM. Host switching again does not
involve any additional latency in the ideal case. As the hot replug event is injected
into the VM even before its execution is continued, the bonding driver should im-
mediately make use of it. After migration, the pingpong latency then returns down
to the level it was at before the migration.

The implementation quality can be judged from the following details:
real-virtual NIC switch The ideal solution shows no measurable overhead by show-

ing higher latency during NIC switching. Although this does not seem realistic,
the implementation should minimize this latency.

virtual-real NIC switch Switching back from the virtual to the real NIC again ide-
ally involves no latency peak. The implementation should also minimize this.

Figure 5.2 shows the output graph of a real-life scenario. The general appear-
ance of the graph matches the graph expected from theory. However, as already
suspected, latencies occur when NICs are switched. The latency which results from
switching between the real and the virtual NIC is relatively high. Hot unplugging
the pass-through NIC makes the bonding driver within the Linux kernel switch to
its virtual NIC. The VM is not reachable for 400 ms in this situation. Hot plugging
the pass-through NIC on the destination host is done immediately before resuming
VM execution, but it takes 3.65 s until the guest effectively uses the pass-through
NIC. Fortunately, the actual switch between virtual and real NIC does not add any
measurable latency.

During host switch the downtime of the VM is also very high. It is not reachable
for 1.7 s. This number is not to be accounted to any of the pass-through migra-
tion code changes. Prior versions of the migration feature, which were not able to
migrate NICs of any kind, usually involved downtimes in the order of hundreds of
milliseconds during host switch. The main part of additional downtime hence comes
from introducing the virtual NIC model to the restore procedure. Especially time
consuming here is the transfer of the relatively large packet queue buffers. Another
cause is the time it takes all relevant hosts and switches to receive and process the
gratuitous ARP packet sent out by the destination host to advertise the new physical
location of the VM.

5.2. Network Throughput During Migration
To measure the effective network throughput of a VM while it is live migrated, a very
similar experiment compared to the prior one was performed. The only difference
is the measuring application. Instead of running pingpong, another program to
measure the network throughput was written. The instance running on the VM acts
as a server and continuously streams data to the client which periodically contains
the current host CPU load.

54

5.2. Network Throughput During Migration

0 5 10 15 20 25 30 35 40 45 50 55 6010−1

100

101

102

103

real NIC virtual NIC real NIC

ideally no
migration gap

ideally no
NIC switch gap

Time / s

R
es

po
ns

e
La

te
nc

y
/

m
s

Figure 5.1.: Expected Network Latency of a VM During a Fictional Live Migration

0 5 10 15 20 25 30 35 40 45 50 55 6010−1

100

101

102

103

real NIC virtual NIC real NIC

real NIC unplug
(400 ms)

migration gap
(1.7 s)

Time / s

R
es

po
ns

e
La

te
nc

y
/

m
s

Figure 5.2.: Measured Network Latency of a VM During the Live Migration Process

55

5. Evaluation

0 20 40 60 80 100 120 140 160 1800

20

40

60

80

100

120

migration
begin

freeze
gap

switch
to phys.
NIC

1 2 3 4 5

Time / s

N
et

wo
rk

T
hr

ou
gh

pu
t

/
M

Bp
s

0

5

10

15

20

25

30

C
PU

Lo
ad

/
%

Figure 5.3.: Network Throughput of a VM (Upper Graph) and CPU Load of the
Host (Lower Graph) During Live Migration

Figure 5.3 shows the result of the throughput measurement. The upper graph
represents the network throughput of the VM during its own live migration. Com-
paring it to Figure 2.6 on page 13, it looks as expected from theory. The lower
graph shows the total CPU load of the host system. It refers to the host the VM is
currently being executed on.

At second 43, the live migration procedure is started. The fast pass-through NIC
is unplugged, which immediately causes the network throughput to drop. Guest
system and host now both use the same physical NIC, hence they have to share its
maximum throughput-rate. The host does not run any other applications causing
relevant CPU load or network traffic. Simultaneously, the CPU load of the host
machine rises because the virtual NIC model of the VM must be serviced by the
VMM in software. The overhead regarding CPU load when using a virtual NIC
model adds up to about 5 %. At second 159 the throughput drops dramatically
during the downtime of the VM while it is frozen shortly before the host switch. The
VM does immediately continue to send data over the virtual NIC of the destination
VMM. Although the pass-through NIC of the destination system is immediately hot
plugged into the VM after it arrived, it takes the guest Linux system additional 3
seconds to actually use it. This is the time the guest system needs to initialize the
device, load the appropriate driver and make the bonding device switch to it as its

56

5.2. Network Throughput During Migration

new active backend NIC. At second 162, the physical NIC is activated by the guest
and the network throughput rises to its old maximum again.

Not directly relevant to the thesis project, but also interesting, are the short
throughput drops which are numbered from 1○ to 5○. From migration begin at
second 43 to 1○, the guest memory range is initially sent over network. Then, from
1○ to 2○, all changes the guest system did to its memory are resent. In total, there are

5 memory resend rounds. At the end of every (re)send round, the throughput drops
because the packet queues run empty before they are filled for the next round. Also
visible is the additional CPU load introduced by the migration code when it enqueues
all dirty pages for transfer: For every resend round, the migration algorithm takes
about 3 % CPU load for several seconds.

57

6. Conclusion and Future Work
Until recently, a consequence of using pass-through devices in virtual machines was
that they were not migratable any longer. Research projects from the near past
have shown that this can be circumvented. This thesis project demonstrates that
extending existing VMMs providing live migration with automatic management of
pass-through devices can be done with minimal administrative effort for the user.
The VMM is now able to live migrate virtual machines equipped with pass-through
NICs of any model enabling for maximum network throughput possible. Further-
more, network connections of services running on the VM in question can be pre-
served in their functional state during migration. This is shown to be possible even
in the scenario of using different pass-through NIC models before and after a live
migration. The VMM device configuration the guest OS is initially booted with can
be temporarily reduced. Limited hardware equipment of hosts to which the VM is
migrated during its life time can therefore be tolerated. No mechanisms involving
paravirtualization to synchronize host and guest had to be introduced to achieve
this. Guest kernel code and driver modules remain absolutely unchanged. Merely
interfaces which already exist on real unvirtualized hardware have been used. Any
commodity operating system is able to deal with ACPI events behind which live
migration events can be hidden.

Apart from unchanged guest source code, the feature of maintaining active TCP
connections intact during host switch and pass-through NIC change requires addi-
tional guest system configuration. It is shown that the configuration requirements
are minimal and trivial to cover by the VM administrator or user.

Being fully device type and model agnostic in regards of hot plug management,
the solution presented proves to be both simple and versatile. Although ACPI hot
plugging is generally applicable to any kind of PCI peripheral device, the feature
of network connection preserving could easily be extended to cover other types of
communication devices. The guest OS solely needs to provide an indirection layer
in form of a logical device driver frontend, similar to the bonding driver which has
been used for ethernet devices.

The measurement results from the last chapter show that forcing a VM to use only
virtual devices by hot unplugging its pass-through devices does not dramatically re-
duce its reachability or performance. Regarding the effective downtime of the VM
after the events of hot unplugging a NIC before the migration or the host switch at
the end of it, certain potential not only for optimization of the hot plugging mech-
anism becomes obvious. Before giving an outlook on what could be achieved with
the new VMM feature in the last section, a few possible approaches for optimization
are presented in the next section.

59

6. Conclusion and Future Work

6.1. Architectural Suggestions for VMMs
To optimize for performance of the live migration of VMs with possibly sophisticated
configurations, a few changes might be implemented in future versions of different
VMM solutions. This section gives an overview on possible optimizations.

6.1.1. Tracking Host Access to Guest Memory
When the VMM emulates privilege-sensitive processor instructions, it manipulates
guest memory on behalf of the guest system. The same is done by device models.
To access guest memory from within the address space of the VMM, guest-physical
addresses need to be converted to host-virtual addresses first. Both the instruction
emulator and the device models consult the virtual memory bus structure within the
VMM to perform this translation. As this involves adding a simple offset to guest-
physical addresses, code modules usually obtain this offset once and then calculate
every guest memory address themselves.

This becomes a problem when every guest memory write access needs to be moni-
tored, e. g. for live migration purposes. Tracking memory writes of the guest system
is easily done by write-unmapping guest memory mappings, as shown before. How-
ever, VMM access to guest memory cannot be monitored using the same way and
has to be done with additional mechanisms.

Instead of accessing the memory bus structure of the VMM only once for address
offset receipt, it should be accessed for every guest memory write. This way the
migration code module could hook itself into the memory bus as a listener and
track access by every device model as well as the instruction emulator. This would
lead to bulky code sending a message to the memory bus for every guest memory
access. To prevent code unreadability, this might be eased by implementing some
kind of intelligent pointer class type automatically consulting the memory bus when
dereferenced. The same should happen on memory writes using memcpy(). If a
device uses a whole lot of sparse guest memory accesses, it would be inefficient to
communicate over the bus every time. A smart pointer could be used recording the
addresses it pointed to. This could be able to automatically send an invalidate page
range message in its destructor.

An important optimization in form of fine-grained guest freezing which would
reduce the visible downtime of migrated VMs, were made possible if this was im-
plemented. In general, a special networking thread of the VMM receives packets
for virtual NICs of the guest, copies them into the guest memory space and main-
tains the receive queue states of the virtual NIC models. At this time, guest packet
reception is simultaneously paused when the guest system is frozen. Packets from
the network which are directed to the guest system are then dropped. Regarding
TCP connections, this forces the sender to resend them as soon as the guest can
receive packets again, which will be on the destination host. As the guest memory
access tracking would now also detect host writes, the virtual NIC model freeze on
the source host could be stalled until all other frozen devices states are sent to the

60

6.1. Architectural Suggestions for VMMs

destination host, together with dirty memory. Virtual NIC models together with
the memory they dirtied by receiving guest packets for the frozen guest could then
be sent to the destination host at last. This would reduce the number of dropped
packets which arrived in the VM while it was frozen. The virtual NIC the VM would
then continue working with on the destination host would consequently immediately
give the guest OS access to as recent as possible packets. This would give it the
chance to immediately acknowledge them over network, possibly even before the
sender tries to resend them, resulting in a lower observed downtime.

6.1.2. Optimizing the Memory Resend Mechanism
At the current state, the migration algorithm sends a set of pages on every resend
round and waits until everything has been successfully received by the other side.
After this stage the algorithm checks which memory pages have been dirtied during
that time. The set of dirty pages is the set of pages which is to be resent during the
next round.

Further analysis of this set might reveal knowledge about how often which guest
regions are actually used. The memory space could be polled for dirty pages multiple
times per resend round. Doing this might enable maintaining an approximation of
the current WWS of the guest system. Knowing the approximate size of the WWS
would then in turn allow reasonable assumptions about how many resend rounds
remain until VM freeze. PCI devices could then be unplugged nearly as late as
possible.

6.1.3. Bonding Guest Driver Optimizations
Measuring the ACPI hot unplug procedure has revealed that, depending on the
device and its driver, hot unplugging a NIC device takes time in the order of hun-
dreds of milliseconds. Regaining network reachability for a pass-through NIC after
replugging it can in turn take time in the order of seconds. These are time spans
the VMM has no influence on. While a delay of hundreds of milliseconds to unplug
a device might be acceptable, it seems reasonable to invest work on the reduction of
the time it takes the guest system to make use of a freshly replugged device, which
is in the order of seconds.

When the guest kernel receives the SCI interrupt indicating a device replug and
handles it with its ACPI subsystem module, it starts a chain of asynchronous opera-
tions. First, the new PCI device needs to be indentified. Afterwards, the appropriate
driver needs to be loaded which will then set it up by registering new device struc-
tures and interrupt handlers in the kernel and initializing the device itself. The
initialized device can then be used by the bonding driver. It will set up the net-
work connection, send gratuitous ARP packets and finally deactivate the other NIC,
which was the virtual one.

The time it takes after loading the driver and making the new NIC go online,
before all network participants have updated their routing tables, is not reducible.

61

6. Conclusion and Future Work

The overhead of loading new drivers, however, can be mitigated when assuming the
possibility that the destination host of the migration might give the guest a pass-
through device of the same model as before. Instead of completely unloading device
drivers, the guest system could just mark driver structures of unplugged NICs as
deactivated. In the event that another NIC of the exact same type will be replugged,
the kernel would then only need to execute a minimal amount of code to initialize
its state without a complete driver reinitialization.

Another problem which might even be considered being a bug in the Linux kernel,
is the fact that an ACPI hot unplug event alone does not trigger the bonding driver
to switch NICs. Hot unplug events should immediately reach the bonding driver
when they occur. This way it would become unnecessary to use the ARP polling or
MII monitoring features to detect the unplug of the active NIC. Due to their polling
nature they react later than an event-based solution would.

6.1.4. General NIC Hardware Improvements

An optimization which could come along with the idea of fine-grained guest freezing
would be to enable NIC hardware to send acknowledgements for TCP packet se-
quences. The model of such a NIC within the VMM would then do the same, even
when the VM is frozen. Network clients which send data to the VM would then
not have to wait for the freshly resumed VM to acknowledge packets it should have
received before the host switch phase of the migration. They could just continue to
send the VM new packets as the source host has acknowledged the old ones already.

Another improvement of different nature would be a hardware serialization/dese-
rialization feature. If hardware device states would be serializable and deserializable,
the use of hot plugging during live migration would not be necessary, if pass-through
devices of the same model are available on both participating hosts. Serialization
and deserialization could be implemented by hardware designers in form of special
I/O commands. Software might just send the device the command to serialize/de-
serialize, paired with an address range. The device would then write/read its state
to/from this address. Complicated efforts as in the work of Pan et al. would then
be obsolete [29].

However, this would still not be of great help if the destination host cannot provide
the same pass-through device model after migration. If it was possible to general-
ize the format which is used by devices to describe their state, the deserialization
hardware routine of a device model B could be fed with the serialization output
of a device model A. In the case that the destination host cannot provide a pass-
through device at all, a virtual model could be initialized with the generalized state
information. Effects of live migration introduced by the use of hot plugging, like
reduced guest network throughput and increased host CPU load during migration,
would then disappear. Furthermore, guest systems would not need to be configured
for this situation. Use of the bonding driver could be waived, at least for migration
purposes.

62

6.2. Outlook

6.2. Outlook
Hot plugging has proven to add much flexibility to VMs without the need to abandon
faithful virtualization and at negligible costs. Hot plugging can also be done with
CPUs and memory. When migrating a VM which makes use of e. g. 16 CPU cores
on host A to a host B which can only provide 8 cores, the difference of cores could
be unplugged. Running 8 virtual CPUs on 8 real cores might be more efficient on
some platforms. Furthermore, if a VM was reduced to only few cores during live
migration, the page dirtying rate could be reduced. Hot plugging of memory could
be used for the same purpose. If the amount of memory of a VM is reduced prior to
its migration, it would be forced to swap out parts of its memory onto its hard disk.
If this is mounted over network from a shared drive, it would effectively reduce the
amount of memory which needs to be sent and synchronized during the migration.
With this set of features, the VMM could automatically compensate varying host
resources for every VM regarding PCI devices, host CPUs and host memory, by
using native ACPI interfaces.

If guest systems were designed for the scenario of sporadically disappearing PCI
devices, CPUs, and memory, new use cases of virtualization could emerge. Regard-
ing desktop computers, servers, cell phones and embedded systems like e. g. car
computers as systems with similar, but heterogeneous architectures, the same guest
system could be used on all of them. VMs could just follow the user, automatically
hopping from host to host using live migration. Instead of having one user account
on every system, users could move their user account in form of a whole VM be-
tween the systems they use. Users would then migrate their system e. g. from their
workstation onto their cell phone and then carry it home.

Adopting the idea of meta drivers like the bonding driver in Linux used for net-
working, it might seem useful to unplug and replug GPUs, monitors, input devices,
etc. from/to VMs while they roam between different hosts. Specialized user appli-
cations could then get the maximum out of currently available devices with flexible
desktop environments and multimedia applications.

The next step on top of this vision would be to execute the virtual CPUs of
single VMs on multiple hosts. Software would then be ultimatively decoupled from
hardware. While users in the past had to configure and maintain all their computer
devices individually, these would then be logically melted into a single, dynamically
extensible system composition. This would again create a variety of use cases. Users
of cheap laptop computers could for example rent computation time of a dozen
additional virtual CPUs for their system from cloud providers to be able to execute
resource hungry applications. Cell phones, tablets and desktop computers could be
combined at home to provide more computation power. It might also be useful to
start some kind of workload on a local VM and then send it into a cloud to collect
the results of the workload later.

63

A. Code Listings

1 DefinitionBlock (
2 "dsdt.aml", // Output Filename
3 "DSDT", // Signature
4 0x00 , // DSDT Compliance Revision
5 "BAMM", // OEMID
6 "JONGE", // TABLE ID
7 0x1 // OEM Revision
8)
9 {

10 Scope (\ _SB) {
11 Device (PCI0) {
12 Name(_HID , EisaId (" PNP0A03 ")) // PCI Host Bridge
13 Name(_ADR , 0)
14 Name(_UID , 0)
15

16 // Hot Plug Parameters . Optional .
17 // Linux will complain and use standard
18 // parameters , if not provided .
19 Name(_HPP , Package () {
20 0x08 , // Cache line size in dwords
21 0x40 , // Latency timer in PCI clocks
22 0x01 , // Enable SERR line
23 0x00 // Enable PERR line
24 })
25

26 // PCI Routing Table
27 // When defining as much ACPI information as
28 // needed for hot plug , we also have to define
29 // Interrupt routing tables like the following .
30 // Otherwise , Linux would complain .
31 Name(_PRT , Package () {
32 Package () { 0x1ffff , 0, LNKA , 0 },
33 Package () { 0x1ffff , 1, LNKB , 0 },
34 Package () { 0x1ffff , 2, LNKC , 0 },
35 Package () { 0x1ffff , 3, LNKD , 0 },
36

37 Package () { 0x2ffff , 0, LNKA , 0 },
38 Package () { 0x2ffff , 1, LNKB , 0 },
39 Package () { 0x2ffff , 2, LNKC , 0 },
40 Package () { 0x2ffff , 3, LNKD , 0 },
41

42 Package () { 0x3ffff , 0, LNKA , 0 },
43 Package () { 0x3ffff , 1, LNKB , 0 },
44 Package () { 0x3ffff , 2, LNKC , 0 },

65

A. Code Listings

45 Package () { 0x3ffff , 3, LNKD , 0 },
46

47 Package () { 0x4ffff , 0, LNKA , 0 },
48 Package () { 0x4ffff , 1, LNKB , 0 },
49 Package () { 0x4ffff , 2, LNKC , 0 },
50 Package () { 0x4ffff , 3, LNKD , 0 },
51 })
52

53 // At boot , Linux will either scan the system for
54 // possible resources used by PCI cards or read
55 // ACPI tables to obtain this information .
56 // When providing as much ACPI data as needed
57 // for hot plugging , then this is not optional any
58 // longer . Linux would complain if all this was
59 // not provided here.
60 Name (_CRS , ResourceTemplate () {
61 // Bus enumeration from _MIN to _MAX
62 WordBusNumber (
63 ResourceProducer ,
64 MinFixed , // _MIF
65 MaxFixed , // _MAF
66 ,
67 0x00 , // _GRA
68 0x00 , // _MIN
69 0xFF , // _MAX
70 0x00 , // _TRA
71 0x100) // _LEN
72 // IO ports usable by PCI from _MIN to _MAX
73 WordIO (
74 ResourceProducer ,
75 MinFixed , // _MIF
76 MaxFixed , // _MAF
77 PosDecode ,
78 EntireRange ,
79 0x0000 , // _GRA
80 0x0000 , // _MIN
81 0x7FFF , // _MAX
82 0x00 , // _TRA
83 0x8000) // _LEN
84 // System memory for mapping BAR
85 // areas from _MIN to _MAX
86 // BAR = Base Address Register ,
87 // every PCI card will
88 // usually have 2 of those.
89 DWordMemory (
90 ResourceProducer ,
91 PosDecode ,
92 MinFixed , // _MIF
93 MaxFixed , // _MAF
94 NonCacheable , // _MEM
95 ReadWrite , // _RW
96 0x00000000 , // _GRA

66

97 0xE0000000 , // _MIN
98 0xE0FFFFFF , // _MAX
99 0x00 , // _TRA

100 0 x01000000) // _LEN
101 })
102

103 // This block introduces three named dword
104 // fields in IO space. The hot plug
105 // controller implements these as virtual
106 // I/O registers . During hot plug/unplug ,
107 // guest and the hosts hot plug controller
108 // will communicate over these.
109 OperationRegion (PCST , SystemIO , 0xae00 , 12)
110 Field (PCST , DWordAcc , NoLock , WriteAsZeros)
111 {
112 PCIU , 32, // IO port 0xae00
113 PCID , 32, // IO port 0xae04
114 B0EJ , 32, // IO port 0xae08
115 }
116

117 // Status method . Statically returns
118 // " Everything is up and working "
119 // because the PCI root bus will always be there.
120 Method (_STA , 0) { Return (0xf) }
121 }
122

123 // All this interrupt routing information is necessary .
124 // This defines the interrupts A, B, C, D, considered
125 // legacy nowadays .
126 // Hot plugging etc. will work without this anyway if
127 // the PCI device uses MSI for interrupting , but the
128 // kernel would complain with ugly error messages .
129 // These device definitions are kept as minimal as
130 // possible .
131 Device (LNKA){
132 Name(_HID , EISAID (" PNP0C0F ")) // PCI interrupt link
133 Name(_UID , 1)
134 Method (_STA , 0, NotSerialized)
135 {
136 Return (0 x0B)
137 }
138 Method (_CRS , 0, NotSerialized)
139 {
140 Name (BUFF , ResourceTemplate () {
141 IRQ (Level , ActiveLow , Shared) {5}
142 })
143 Return (BUFF)
144 }
145 Method (_PRS , 0, NotSerialized)
146 {
147 Name (BUFF , ResourceTemplate () {
148 IRQ (Level , ActiveLow , Shared) {5 ,9 ,10}

67

A. Code Listings

149 })
150 Return (BUFF)
151 }
152 Method (_SRS , 1, NotSerialized) {}
153 Method (_DIS , 0, NotSerialized) {}
154 }
155 Device (LNKB){
156 Name(_HID , EISAID (" PNP0C0F ")) // PCI interrupt link
157 Name(_UID , 2)
158 Method (_STA , 0, NotSerialized)
159 {
160 Return (0 x0B)
161 }
162 Method (_CRS , 0, NotSerialized)
163 {
164 Name (BUFF , ResourceTemplate () {
165 IRQ (Level , ActiveLow , Shared) {10}
166 })
167 Return (BUFF)
168 }
169 Method (_PRS , 0, NotSerialized)
170 {
171 Name (BUFF , ResourceTemplate () {
172 IRQ (Level , ActiveLow , Shared) {5 ,9 ,10}
173 })
174 Return (BUFF)
175 }
176 Method (_SRS , 1, NotSerialized) {}
177 Method (_DIS , 0, NotSerialized) {}
178 }
179 Device (LNKC){
180 Name(_HID , EISAID (" PNP0C0F ")) // PCI interrupt link
181 Name(_UID , 3)
182 Method (_STA , 0, NotSerialized)
183 {
184 Return (0 x0B)
185 }
186 Method (_CRS , 0, NotSerialized)
187 {
188 Name (BUFF , ResourceTemplate () {
189 IRQ (Level , ActiveLow , Shared) {9}
190 })
191 Return (BUFF)
192 }
193 Method (_PRS , 0, NotSerialized)
194 {
195 Name (BUFF , ResourceTemplate () {
196 IRQ (Level , ActiveLow , Shared) {5 ,9 ,10}
197 })
198 Return (BUFF)
199 }
200 Method (_SRS , 1, NotSerialized) {}

68

201 Method (_DIS , 0, NotSerialized) {}
202 }
203 Device (LNKD){
204 Name(_HID , EISAID (" PNP0C0F ")) // PCI interrupt link
205 Name(_UID , 4)
206 Method (_STA , 0, NotSerialized)
207 {
208 Return (0 x0B)
209 }
210 Method (_CRS , 0, NotSerialized)
211 {
212 Name (BUFF , ResourceTemplate () {
213 IRQ (Level , ActiveLow , Shared) {5}
214 })
215 Return (BUFF)
216 }
217 Method (_PRS , 0, NotSerialized)
218 {
219 Name (BUFF , ResourceTemplate () {
220 IRQ (Level , ActiveLow , Shared) {5 ,9 ,10}
221 })
222 Return (BUFF)
223 }
224 Method (_SRS , 1, NotSerialized) {}
225 Method (_DIS , 0, NotSerialized) {}
226 }
227

228 }
229

230 Scope (\ _SB.PCI0) {
231 // These are PCI slot definitions .
232 // They are necessary because every PCI card
233 // which shall be ejectable , needs an _EJ0 method .
234 Device (S01) {
235 Name (_ADR , 0 x10000)
236 Name (_SUN , 0x01) // SUN: Slot User Number
237

238 // This method is called by the operating system
239 // after unloading the device driver etc.
240 // _EJ0 = eject callback
241 Method (_EJ0 , 1) { PCEJ (0 x01) }
242 }
243

244 Device (S02) {
245 Name (_ADR , 0 x20000)
246 Name (_SUN , 0x02)
247 Method (_EJ0 , 1) { PCEJ (0 x02) }
248 }
249

250 Device (S03) {
251 Name (_ADR , 0 x30000)
252 Name (_SUN , 0x03)

69

A. Code Listings

253 Method (_EJ0 , 1) { PCEJ (0 x03) }
254 }
255

256 Device (S04) {
257 Name (_ADR , 0 x40000)
258 Name (_SUN , 0x04)
259 Method (_EJ0 , 1) { PCEJ (0 x04) }
260 }
261

262 // Called by some PCI card ’s _EJ0 method ,
263 // This tells the VMM to turn off the
264 // PCI device by writing (1 << PCI_ID) to the
265 // IO port associated with the B0EJ symbol .
266 Method (PCEJ , 1, NotSerialized) {
267 Store(ShiftLeft (1, Arg0), B0EJ)
268 Return (0x0)
269 }
270

271 // PCNT = PCi NoTify
272 // PCNT(<device >, <1 = check for inserted device /
273 // 3 = eject requested >)
274 // The values 1 and 3 are defined in the ACPI spec
275 Method (PCNT , 2) {
276 If (LEqual (Arg0 , 0x01)) { Notify (S01 , Arg1) }
277 If (LEqual (Arg0 , 0x02)) { Notify (S02 , Arg1) }
278 If (LEqual (Arg0 , 0x03)) { Notify (S03 , Arg1) }
279 If (LEqual (Arg0 , 0x04)) { Notify (S04 , Arg1) }
280 }
281

282 /* PCI hot plug notify method */
283 Method (PCNF , 0) {
284 // Local0 = iterator
285 Store (Zero , Local0)
286

287 // These two fields contain bits mapped
288 // to PCI devices , like in the GPE bitmap .
289

290 // bit (1 << N) set here
291 // --> Device N was inserted
292 Store (PCIU , Local1)
293 // bit (1 << N) set here
294 // --> Device N has to be removed
295 Store (PCID , Local2)
296

297 While (LLess(Local0 , 4)) {
298 Increment (Local0)
299 If (And(Local1 , ShiftLeft (1, Local0))) {
300 PCNT(Local0 , 1) // 1 => DEVICE CHECK
301 }
302 If (And(Local2 , ShiftLeft (1, Local0))) {
303 PCNT(Local0 , 3) // 3 => EJECT REQUEST
304 }

70

305 }
306 Return (One)
307 }
308 }
309

310 Scope (\ _GPE)
311 {
312 Name(_HID , " ACPI0006 ")
313

314 // These methods are wired to the according
315 // bits in the GPE bitmap . The VMM will
316 // raise bits and then send an interrupt 9.
317 // The ACPI code in the guest kernel will
318 // then dispatch one of these methods .
319 Method (_E01) {
320 _SB.PCI0.PCNF () // PCI hot plug event
321 }
322 }
323

324 } // end of definition block

Listing A.1: ASL Code of the DSDT AML Block Needed for Hot Plugging

71

B. Acronyms and Terminology
DHCP The Dynamic Host Configuration Protocol is a centralized protocol used

by new network clients to obtain a new IP address from a central address
assignment instance.

DMA Direct Memory Access is a hardware feature that allows to copy memory
between system memory and devices without utilizing the CPU

ISA The Instruction Set Architecture is the part of the computer architecture
visible to software. This includes instructions, registers, addressing modes,
memory architecture, interrupt and exception handling, and external I/O.

Kernel Main component of a computer operating system managing the resources
of the system for applications

Kernel Module
The Linux kernel provides the possibility to load code at runtime to extend
its functionality

MMU The Memory Management Unit translates virtual addresses to physical
addresses using page tables the operating system provides.

MTU The Maximum Transmission Unit is the maximum size of an unfragmented
network packet a system can transfer over network.

NIC The Network Interface Controller, also known as Network Interface Card,
or LAN Adapter Connects a computer to a computer network.

Page On systems implementing the concept of virtual memory the whole memory
range is partitioned into blocks (then called pages) of fixed size

SMP The term Symmetric Multiprocessing describes a class of computer archi-
tectures where multiple cores share the same main memory space and are
controlled by a single operating system instance

73

Bibliography
[1] AMD. Amd64 virtualization codenamed “pacifica” technology, secure virtual

machine architecture reference manual. Technical report, AMD, May 2005.
Revision 3.01.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In Proceedings
of the nineteenth ACM symposium on Operating systems principles, SOSP ’03,
pages 164–177, New York, NY, USA, 2003. ACM.

[3] M. Ben-yehuda, J. Mason, O. Krieger, J. Xenidis, L. V. Doorn, A. Mallick,
and E. Wahlig. Utilizing iommus for virtualization in linux and xen. In In
Proceedings of the Linux Symposium, 2006.

[4] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. Accelerating two-
dimensional page walks for virtualized systems. SIGPLAN Not., 43(3):26–35,
Mar. 2008.

[5] P. M. Chen and B. D. Noble. When virtual is better than real. In Proceedings of
the Eighth Workshop on Hot Topics in Operating Systems, HOTOS ’01, pages
133–, Washington, DC, USA, 2001. IEEE Computer Society.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live Migration of Virtual Machines. In Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation -
Volume 2, NSDI’05, pages 273–286, Berkeley, CA, USA, 2005. USENIX Asso-
ciation.

[7] A. L. Cox. Optimizing network virtualization in xen. In In Proceedings of the
USENIX Annual Technical Conference, pages 15–28, 2006.

[8] T. Davis. Linux Ethernet Bonding Driver HOWTO, Apr. 2011. https://www.
kernel.org/doc/Documentation/networking/bonding.txt.

[9] J. Fisher-Ogden. Hardware support for efficient virtualization. 17:2008, 2006.

[10] R. P. Goldberg. Architectural Principles for Virtual Computer Systems. PhD
thesis, Harvard University, 1973.

[11] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation,
Phoenix Technologies Ltd., and Toshiba Corporation. PCI Hot Plug Speci-
fication, June 2001. Revision 5.0.

75

https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.kernel.org/doc/Documentation/networking/bonding.txt

Bibliography

[12] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation,
Phoenix Technologies Ltd., and Toshiba Corporation. Advanced Configura-
tion and Power Interface Specification, December 6, 2011. Revision 5.0.

[13] M. R. Hines and K. Gopalan. Post-copy based live virtual machine migration
using adaptive pre-paging and dynamic self-ballooning. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, VEE ’09, pages 51–60, New York, NY, USA, 2009. ACM.

[14] Intel. Intel virtualization technology specification for the ia-32 intel architec-
ture. Technical report, Intel, Apr. 2005.

[15] Intel. Intel virtualization technology for directed i/o architecture specification.
Technical report, Intel, Sept. 2007.

[16] Intel. Intel 82576 SR-IOV driver companion guide. Technical report, LAN
Access Division, June 2009. Revision 1.00.

[17] Intel. ACPI Component Architecture user guide and programmer reference.
Technical report, ACPICA, June 2013. Revision 5.16.

[18] Intel. iASL: Acpi source language optimizing compiler and disassembler user
guide. Technical report, ACPICA, Jan. 2013. Revision 5.03.

[19] A. Kadav and M. M. Swift. Live Migration of Direct-Access Devices. SIGOPS
Oper. Syst. Rev., 43(3):95–104, July 2009.

[20] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the linux virtual
machine monitor. In Proceedings of the Linux Symposium Volume 1, Ottawa,
Ontario, Canada, June 2007.

[21] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-
duwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood. sel4: formal verification of an os kernel. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, SOSP ’09, pages
207–220, New York, NY, USA, 2009. ACM.

[22] P. Kutch. Pci-sig sr-iov primer: An introduction to sr-iov technology. Applica-
tion note, pages 321211–002, 2011.

[23] A. Lackorzynski and A. Warg. Taming subsystems: capabilities as universal
resource access control in l4. In Proceedings of the Second Workshop on Isolation
and Integration in Embedded Systems, IIES ’09, pages 25–30, New York, NY,
USA, 2009. ACM.

[24] J. Liedtke. On micro-kernel construction. SIGOPS Oper. Syst. Rev., 29(5):237–
250, Dec. 1995.

76

Bibliography

[25] J. Liedtke. Towards real microkernels. 39(9):70–77, Sept. 1996.

[26] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu. Live migration of virtual machine
based on full system trace and replay. In Proceedings of the 18th ACM in-
ternational symposium on High performance distributed computing, HPDC ’09,
pages 101–110, New York, NY, USA, 2009. ACM.

[27] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W. Zwaenepoel.
Diagnosing performance overheads in the xen virtual machine environment.
In Proceedings of the 1st ACM/USENIX international conference on Virtual
execution environments, VEE ’05, pages 13–23, New York, NY, USA, 2005.
ACM.

[28] D. S. Milóȷičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou. Process
migration. ACM Comput. Surv., 32(3):241–299, Sept. 2000.

[29] Z. Pan, Y. Dong, Y. Chen, L. Zhang, and Z. Zhang. Compsc: live migration
with pass-through devices. SIGPLAN Not., 47(7):109–120, Mar. 2012.

[30] J. S. Robin and C. E. Irvine. Analysis of the intel pentium’s ability to support
a secure virtual machine monitor. In Proceedings of the 9th conference on
USENIX Security Symposium - Volume 9, pages 10–10, Berkeley, CA, USA,
2000. USENIX Association.

[31] R. Russell. virtio: towards a de-facto standard for virtual i/o devices. SIGOPS
Oper. Syst. Rev., 42:95–103, July 2008.

[32] J. E. Smith and R. Nair. Virtual machines: versatile platforms for systems and
processes. Elsevier, Burlington, MA, 2005.

[33] U. Steinberg. NOVA Microhypervisor Interface Specification, Feb. 2013. pre-
liminary version.

[34] U. Steinberg and B. Kauer. NOVA: a Microhypervisor-Based Secure Virtualiza-
tion Architecture. In Proceedings of the 5th European conference on Computer
systems, EuroSys ’10, pages 209–222, New York, NY, USA, 2010. ACM.

[35] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and performance in the denali
isolation kernel. SIGOPS Oper. Syst. Rev., 36:195–209, December 2002.

[36] E. Zhai, G. D. Cummings, and Y. Dong. Live Migration with Pass-through
Device for Linux VM. In Proceedings of the Linux Symposium, Ottawa, Ontario,
Canada, July 2008.

77

