
Timeslice Donation in Component-Based Systems

Udo Steinberg
Technische Universität Dresden

udo@hypervisor.org

Alexander Böttcher
Technische Universität Dresden

boettcher@tudos.org

Bernhard Kauer
Technische Universität Dresden

bk@vmmon.org

Abstract—An operating system that uses a priority-based
scheduling algorithm must deal with the priority inversion
problem, which may manifest itself when different components
access shared resources. One solution that avoids priority inver-
sion is to inherit the priority across component interactions.
In this paper we present our implementation of a timeslice
donation mechanism that implements priority and bandwidth
inheritance in the NOVA microhypervisor. We describe an
algorithm for tracking dependencies between threads with
minimal runtime overhead. Our algorithm does not limit the
preemptibility of the kernel, supports blocked resource holders,
and facilitates the abortion of inheritance relationships from
remote processors.

I. Introduction

Priority inversion [1] occurs when a high-priority thread
H is blocked by a lower-priority thread L holding a shared
resource R as illustrated in Figure 1. Priority inversion can
be unbounded if a medium-priority thread M prevents the
low-priority thread from running and thus from releasing
the resource. A lock that protects a critical section from
concurrent access is a typical example for a shared resource
that can cause priority inversion. In component-based sys-
tems the shared resource may also be a server thread that is
contacted by multiple clients.

unbounded priority inversion

pr
io

ri
ty L

M

H

R

priority inversion

H

L

R

Figure 1. Example of priority inversion: The currently active thread is
marked bold.

Resource Access Protocols

Several solutions for circumventing the priority inversion
problem have been proposed. They range from disabling
preemption to using complex protocols to control resource
access. Disabling preemption while holding a shared re-
source is prohibitive in systems with real-time or low-
latency requirements. Protocols such as the priority ceiling

protocol (PCP) and the priority inheritance protocol (PIP) [2]
avoid priority inversion by defining rules for resource alloca-
tion and priority adjustment that guarantee forward progress
for threads holding shared resources.

The priority ceiling protocol prevents deadlocks that arise
from contention on shared resources. However, PCP requires
a priori knowledge about all threads in the system. At
construction time every shared resource is assigned a static
ceiling priority, which is computed as the maximum of the
priorities of all threads that will ever acquire the resource.
Priority ceiling is therefore unsuitable for open systems [3]
where threads are created and destroyed dynamically or
where the resource access pattern of threads is not known in
advance. Because priority ceiling relies on static priorities
it is not applicable to scheduling algorithms with dynamic
priorities, such as earliest deadline first (EDF) [4].

When using the priority inheritance protocol, the priority
of a thread that holds a shared resource is temporarily
boosted to the maximum of the priorities of all threads
that are currently trying to acquire the resource. Priority
inheritance works in systems with dynamic priorities and
does not require any prior knowledge about the interaction
between threads and resources.

Bandwidth inheritance (BWI) [5] can be considered an
extension of the priority inheritance protocol to resource
reservations. Instead of inheriting just the priority, the holder
of a shared resource inherits the entire reservation of each
thread that attempts to acquire the resource. Bandwidth
inheritance reduces the blocking time for other threads when
the resource holder’s own reservation is depleted.

Resource reservations in our system are called timeslices
and consist of a time quantum coupled with a priority.
Timeslices with a higher priority have precedence over those
with a lower priority. The time quantum facilitates round-
robin scheduling among timeslices with the same priority.

In this paper, we describe and evaluate the timeslice
donation mechanism of the NOVA microhypervisor [6].
This mechanism allows for an efficient implementation of
priority and bandwidth inheritance in an open system with
many threads. We discuss issues that arise when threads
block or unblock while holding shared resources and explore
how blocking dependencies can be tracked with minimal
overhead.



II. Background

Component-based operating systems achieve additional
fault isolation by running device drivers and system services
in different address spaces. Communication between these
components must use inter-process communication (IPC)
instead of direct function calls in order to cross address-
space boundaries. When multiple clients contact the same
server, threads in the server are a shared resource and
therefore prone to cause priority inversion.

Lazy scheduling was originally introduced as a perfor-
mance optimization in the L4 microkernel family to bypass
the scheduler during inter-process communication [7]. Fig-
ure 2 illustrates the communication between a client and a
server thread. Because threads and timeslices are separate
kernel objects, the kernel can switch them independently.
During IPC, the kernel changes the current thread from the
client C to the server S and back, without changing the
current timeslice. The effect is that the client donates its
timeslice to the server.

running blocked blocked running

request response

c c

C S C S

Figure 2. Synchronous communication between a client and a server in a
component-based system. Left side: During the request the client thread C
donates its timeslice c to the server thread S . Right side: When the server
responds, the kernel returns the previously donated timeslice c back to the
client.

Timeslice donation can be used to implement priority
inheritance, but only if the kernel correctly resumes the
donation after a preemption. For this purpose the kernel must
track dependencies between threads so that it can determine
the thread to which a timeslice has been most recently
donated. Most versions of L4 do not implement dependency
tracking. Therefore, priority inversion may occur when a
server thread is preempted and afterwards uses its own,
potentially low-priority, timeslice. This problem is described
in more detail in [8].

Timeslice Donation and Helping

The NOVA microhypervisor implements priority and
bandwidth inheritance using the following two closely
related mechanisms:

Donation: In the left example of Figure 3, a high-
priority client thread C sends an IPC to a low-priority server
thread S . By donating the client’s timeslice c to the server,
the priority of S is boosted to that of C and the kernel can
directly switch from the client to the server without having
to check for the existence of ready threads with priorities
between the client and the server, such as the medium-
priority thread T . Without timeslice donation, S would use
its own low-priority timeslice s and T would be able to
preempt S , thereby causing priority inversion for C. During

IPC, the kernel establishes an explicit donation dependency
from C to S , which we denote by a solid arrow. When
the scheduler selects the client’s timeslice c, it follows the
donation dependency and activates S instead of C, thereby
resuming the donation.

Helping: Donation boosts the priority of a server to
that of its current client and ensures that, for as long as the
server works on behalf of the client, it can only be preempted
by threads with a higher priority than the client. Helping
augments donation by boosting the priority of the server
even further when higher-priority clients try to rendezvous
with the server while it is busy handling a request. In the
right example of Figure 3, the server thread S is handling
the request of a client thread C and initially uses the client’s
timeslice c. Another thread H with a higher priority than C
can preempt the server and attempt to rendezvous with S .
Because the rendezvous fails, H switches directly to S in
order to help S finish its current request, thereby elevating
the priority of S to that of H. Unlike donation, the kernel
does not establish an explicit dependency from H to S . Upon
selecting the timeslice h, the scheduler activates H, which
simply retries its operation. We denote such an implicit
helping dependency by a dashed arrow.

pr
io

ri
ty

donation + helping

C

H

S

donation

S

T

C
t

c

h

c

ss

Figure 3. Example of timeslice donation and helping during client-server
communication. The currently active thread and timeslice are marked bold.

Threads in a realtime system typically obtain only a
limited time quantum in each period of execution. If a
server exhausts the time quantum of its current client during
the handling of a request, the server becomes stuck until
the client’s time quantum has been replenished. In such
cases other clients cannot rendezvous with the server and
therefore make use of the bandwidth inheritance property of
the helping mechanism to allow the server to run the request
to completion.

Similar issues arise when a client aborts its request before
the server can reply, when the client is deleted, or when the
communication channel between the client and the server
is destroyed. Such cases leave the server in an inconsistent
state that is similar to the state when the server is preempted,
except that the old client will no longer provide the time
quantum for the server to complete the request. Instead,
subsequent clients use the helping mechanism to bring the



4
3

2
1

2
3

1

31

321

A
C

D

V

X

W

E

Y

Z

3 4

U

4

435

3251

B

A
C

D

V

X

W

E

Y

Z

5 4

U

4

4

pr
io

ri
ty

4
5

Figure 4. Dependency tracking: The highest-priority incoming edge of each node and the currently active thread and timeslice are marked bold. Changes
to nodes in the priority inheritance tree may require updates along the path from the changed node to the root node. In this example the incoming edges
of U, X, and Z must be updated when B leaves the priority inheritance tree.

server back into a consistent state where it can accept the
next request. Because synchronous communication between
threads on the same CPU always uses timeslice donation
and helping, server threads that can only be contacted on
their local CPU do not need a timeslice of their own.

The donation and helping mechanisms are transitive. If
a server needs to contact another server to handle a client
request, it further donates the current timeslice to the other
server for the duration of the nested request. Therefore, the
kernel must be able to handle large dependency tracking
trees.

Multiprocessor Considerations

Helping and donation cannot be easily extended to mul-
tiprocessor systems and we are currently aware of only one
proposal that describes a multiprocessor priority inheritance
protocol [9].

One observation is that priorities of threads on different
CPUs are not directly comparable. Additionally, the result of
any comparison would quickly become outdated when other
processors reschedule. Another observation is that a client
cannot donate time from its CPU to help a server on another
CPU. Such an operation would cause time to disappear
on one processor and to reappear on another. Donating
additional time to an already fully loaded CPU causes
overload and can potentially break real-time guarantees.

The overload situation can be avoided if the client pulls
a preempted server thread over to its CPU to help it locally.
However, such an approach requires the address space of
the server to be visible and identically configured on all
processors on which clients for this server exist. In cases
where client threads from different CPUs attempt to help the
same server thread simultaneously, the kernel would need
to employ a complex arbitration protocol among all helping

client threads to ensure that each server thread executes on
one processor only at a time. Furthermore, migrating the
working set of the server thread to the CPU of the client
and then back to the original CPU can result in a significant
amount of coherence traffic on the interconnect.

Due to these drawbacks our algorithm does not include
cross-processor helping. However, it supports IPC aborts
from remote CPUs.

III. RelatedWork

In our previous work on capacity-reserve donation [10],
we described an algorithm for computing the effective
priority of a server as the maximum of the effective priorities
of its current and all pending clients. The algorithm performs
the tracking of dependencies and priorities by storing pri-
ority information inside the nodes and along the edges of
a priority inheritance tree. For each node in the tree, the
outgoing edge is marked with the maximum of the priority
along all incoming edges of that node as shown in Figure 4.

Unfortunately, changes to nodes of the inheritance tree
may require numerous updates to the edges of the tree as
shown on the right side. When thread B leaves the priority
inheritance tree (because it experiences an IPC timeout or
is deleted), the kernel must recompute the priorities along
the edges from the changed node down to the root node.
In this example, the kernel must update the incoming edges
of threads U, X, and Z to determine that the timeslice of
thread E has become the highest-priority timeslice donated
to Z. Depending on the nesting level of IPC, the number
of updates to the priority inheritance tree can become very
large, resulting in long-running kernel operations that must
be executed atomically. Protecting the whole tree with a
global lock for the duration of the update is undesirable



because it disables preemption and limits the scalability of
the algorithm in multiprocessor environments.

A more efficient version of the bandwidth inheritance
protocol [11] has been implemented in the Linux kernel.
It also uses a tree structure to track the dependencies
between tasks and resources. When a task blocks on a shared
resource, all tasks that previously inherited their bandwidth
to that task must be updated to inherit their bandwidth to
the holder of the shared resource instead.

OKL4 is a commercially deployed L4 microkernel, which
is derived from L4Ka::Pistachio. OKL4 tracks IPC de-
pendencies across preemptions and implements a priority
inheritance algorithm. The kernel grabs a spinlock during
updates to the inheritance tree in order to guarantee atomic
updates.

With the realtime patch [12] series, support for priority
inheritance was introduced to the Linux kernel. Because the
realtime patch made the kernel more preemptible, the need
arose to avoid unbounded priority inversion when threads
are preempted while holding kernel locks [13]. Further
research based on the Linux realtime patches, especially
in the context of priority inheritance, is conducted by the
KUSP [14] group. Their research focus is on supporting
arbitrary scheduling semantics using group scheduling [15]
in combination with priority inheritance.

IV. Implementation

Dependency tracking algorithms that store priority infor-
mation along the edges of the priority inheritance tree share
the problem that updates to a node in the tree require a
branch of the tree to be updated atomically. For example,
when a client with a high-priority timeslice joins or leaves an
existing priority inheritance tree, it must rewrite the priority
information along the edges from the client to the server at
the root of the tree as shown in Figure 4. The update of the
tree cannot be preempted because the scheduler must not see
the tree in an inconsistent state. Therefore, the duration of
the update process defines the preemptibility of the kernel.
In an open system, a malicious user can create as many
threads as his resources permit, arrange them in a long
donation or helping chain and then cause an update in the
priority inheritance tree that will disable preemption in the
kernel for an extended period of time. Therefore, we devised
a new dependency tracking algorithm that does not affect
the kernel’s preemptibility and at the same time keeps the
dependency tracking overhead low. Before we describe this
algorithm in detail, we present our requirements.

Requirements

To prevent malicious threads from being able to cause
long scheduling delays in the kernel, we require updates in
the priority inheritance tree to be preemptible. Furthermore,
we demand that each operation is accounted to the thread
that triggered it. Our goal is to move all time-consuming

operations from the performance-critical paths in the kernel
into functions that are called infrequently. For example, we
strive to move as much dependency tracking as possible out
of the IPC path into the scheduler and into functions that
handle deletion of threads and communication aborts. The
new dependency tracking algorithm works for an arbitrary
number of threads and is not limited to small-scale systems
or systems where all communication patterns must be known
in advance.

Improved Algorithm for Dependency Tracking

Our new algorithm is based on the idea of storing no
priority information whatsoever in nodes of the tree, which
obviates the need for updating the priorities when threads
join or leave the priority inheritance tree. Furthermore, pri-
ority information in the tree cannot become stale. However,
this approach requires the kernel to restore the missing
information during scheduling decisions, which works as
follows:

When invoked, the scheduler selects the highest-priority
timeslice from the runqueue and then follows the donation
links to determine the path that the timeslice has taken prior
to a previous preemption. When the scheduler finds a thread
that has no outgoing donation link, it switches to that thread.
In the left example of Figure 4, the scheduler selects the
timeslice with priority 5, which belongs to thread B, and
then follows the donation links from B via U and X to Z.
Because Z has no outgoing edge, Z is dispatched. When
thread B leaves the tree as shown in the right example of
Figure 4, the scheduler selects the timeslice with priority 4,
which belongs to thread E and then follows the donation
links from E via W and Y to the server Z.

Traversing the donation links from a client’s timeslice
to the server at the root of the priority inheritance tree
is a preemptible operation. If a higher-priority timeslice is
added to the runqueue while the scheduler is traversing
the tree, the kernel restarts the traversal, beginning with
the higher-priority timeslice instead. The benefit of this
algorithm is that whenever nodes in the inheritance tree are
added or removed, no priority information must be updated.
Algorithms that store priorities in all nodes of the tree can
quickly determine the highest-priority timeslice donated to
a thread by checking the highest-priority incoming edge of
that thread. In contrast, our algorithm must compute this
information by traversing the priority inheritance tree after
a preemption. We quantify the cost for this operation in
Section V.

Blocking

An interesting scenario occurs when the server thread at
the root of a priority inheritance tree blocks. This can happen
when the server waits for an interrupt that signals completion
of I/O or when it waits for the reply from a cross-processor
request for which timeslice donation cannot be used.



b d c a

blocked

donating

helping

A

B

C
D

Y

ZZ

running

d
c

a B

C
D

Y

b

A

Figure 5. Blocking of threads when the holder of a shared resource is
blocked.

In the left example of Figure 5, a server thread Z blocks
while using timeslice b. In that case the kernel removes b
from the runqueue and enqueues it in a priority-sorted queue
of timeslices that are blocked on Z. During the subsequent
reschedule operation, the scheduler selects timeslice d and
traverses the priority inheritance tree down to Z. When it
finds that Z is still blocked, d is also added to the queue of
blocked timeslices. The right side of Figure 5 illustrates that
all other timeslices that have been donated to Z are gradually
removed from the runqueue and become blocked on Z when
they are selected by the scheduler.

Staggered Wakeup

When Z eventually becomes unblocked, all timeslices
that have previously been blocked on Z must be added
back to the runqueue, effectively reversing the operation of
blocking from Figure 5. Because an arbitrary number of
timeslices can potentially be blocked at the root of a priority
inheritance tree, releasing all of them at once contradicts
our requirement of avoiding long scheduling delays. Based
on the observation that only the highest-priority timeslice
from the blocked queue will actually be selected by the
scheduler, releasing the other timeslices can be deferred.
The left side of Figure 6 illustrates that, when Z becomes
unblocked, the kernel adds b, the highest-priority timeslice
blocked on Z, back to the runqueue. The other timeslices that
were blocked on Z remain linked to b and are not added to
the runqueue yet. When b lowers its priority or is removed
from the runqueue, the kernel adds d, the first timeslice
linked to b, back to the runqueue and leaves the remaining
timeslices linked to d as shown in the right of Figure 6.
The benefit of this approach is that when Z unblocks, only a
single timeslice needs to be added to the runqueue. The other
blocked timeslices will be released in a staggered fashion.

Direct Switching

Recall from Figure 2 that the kernel implements timeslice
donation by directly switching from one thread to another
while leaving the current timeslice unchanged. When a

donating

helping

readyready

A

B

C
D

Y

Z

A
C

D

Y

Z

d
b d c a

c a

Figure 6. Staggered wakeup of threads when the holder of a shared
resource unblocks.

server responds to its client, the kernel must check whether
it can undo the timeslice donation by directly switching back
to the client. Switching back to the client is wrong in cases
where the server is currently using the timeslice of a high-
priority helper and the client and the helper do not share
the same incoming edge in the priority inheritance tree of
the server. For example, when Z responds to Y in the left
example of Figure 5, the kernel can only switch from Z to
Y if Z is running on timeslice a or b. If Z is running on
timeslice c or d, the kernel cannot return the timeslice to
Y , because the timeslice was not donated to Z via Y . The
kernel must instead switch to thread C or D so that they can
retry their rendezvous with Z. Because our algorithm does
not store any information along the edges of the priority
inheritance tree, the kernel uses the following trick: When
the scheduler selects a new timeslice and starts traversing the
tree, the kernel counts the number of consecutive donation
links along the path in a CPU-local donation counter. At
the beginning of a new traversal and every time the kernel
encounters a helping link, the donation counter is reset to
zero. The donation counter indicates how often the kernel
can directly switch from a server back to its client. When
Z replies to Y in the left example of Figure 5, the current
timeslice is b and the donation counter is 1, indicating that
the kernel can directly switch from Z to Y , but not from
Y to A. When a client donates the current timeslice to a
server, the kernel increments the donation counter. When
a server responds to its client, the kernel decrements the
donation counter. The update of the donation counter is the
only overhead added to the performance-critical IPC path by
our dependency tracking algorithm.

Livelock Detection

Communication in component-based systems can lead to
deadlock when multiple threads contact each other in a
circular manner. In Figure 7, a client thread C contacts a
server Y , which in turn contacts another server Z. Deadlock
occurs when Z tries to contact Y . In our implementation,



Y and Z would permanently try to help each other, thereby
turning the deadlock into a livelock.

In NOVA, the kernel can easily detect such livelocks dur-
ing the traversal of the priority inheritance tree by counting
the number of consecutive helping links in a helping counter.
When the value of the helping counter exceeds the number
of threads in the system, the kernel can conclude that the
current timeslice is involved in a livelock scenario. It can
then remove the timeslice from the runqueue and print a
diagnostic message.

request

c

C Y

Z

request

request

c

C Y

Z

request

request

Figure 7. Development of a Livelock

V. Evaluation

We evaluated the performance of our priority-inheritance
implementation using several microbenchmarks, which we
conducted on an Intel Core2 Duo CPU with 2.67 GHz clock
frequency.

In contrast to dependency tracking algorithms that store
priority information in each node of the inheritance tree,
our algorithm keeps the priority information only in the
timeslices bound to the client threads that form the leaves of
the inheritance tree. Whenever the current timeslice changes,
the scheduler must follow the dependency chain to find the
server thread at the root of the inheritance tree to which the
timeslice has been donated. Fortunately such tree traversals
are neither very frequent nor very expensive.

Frequency of Dependency Tracking

The kernel invokes the scheduler to select a new current
timeslice when the current thread suspends itself and thereby
removes the current timeslice from the runqueue. The sched-
uler is also invoked when the kernel releases a previously
blocked thread and that thread adds a timeslice with a
higher priority than the current timeslice to the runqueue.
It should be noted that the scheduler need not be invoked
during client-server communication (see Figure 2) because
the current timeslice remains the same and the runqueue
need not be updated.

The frequency of scheduler invocations depends on the
number of preemptions in the system, which in turn depends
on the length of timeslices and the frequency of higher-
priority threads being released.

Cost of Dependency Tracking

The costs of each traversal depends on the depth of the
priority inheritance tree and on the type of dependency

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180 200

C
PU

C
yc

le
s

pe
r

L
in

k

Number of Threads

switch to explicit link

Figure 8. Overhead for traversing a helping link: The average cost is
independent of the number of threads along the path. The graph compares
an implementation in which the kernel simply switches to the destination
thread with an implementation that reduces the overhead by tracking helping
links explicitly.

encountered during the traversal. Donation dependencies are
explicitly tracked by the kernel, which stores the IPC partner
in the thread control block. Therefore, following a donation
dependency is a pointer chasing operation, which can lead to
cache and TLB misses. In NOVA, all timeslices and threads
are allocated from slab allocators and thus likely to be in
close proximity. Furthermore, the kernel uses superpages for
its memory region to reduce the number of TLB misses. The
traversal of a donation dependency typically only causes a
cache miss.

A helping dependency indicates that a client thread did
not manage to rendezvous with the server because the server
was busy. In that case the client thread retries its rendezvous
and thereby switches to the server thread. The thread switch
is all that is required to traverse a helping dependency. The
cost for the switch typically includes the cost for switching
address spaces unless both threads happen to be in the same
address space. The overhead can be reduced by tracking
helping dependencies explicitly. There is a tradeoff between
faster traversal of dependencies and having to store more
information in the priority inheritance tree. We implemented
and measured both variants. The CPU cycles required to
traverse the priority inheritance tree are accounted to the
newly selected current timeslice where the traversal started.
Determining the thread at the root of the tree that will use
the timeslice is part of the actual helping process.

Figure 8 shows that simply switching to the thread in
order to help is much more expensive than following an
explicit link. Furthermore, the costs of traversing a single
helping link is nearly constant, irrespective of chain length.
The step in the lower curve and the slight increase of 10–
30 cycles in the upper curve can be attributed to additional
cache usage when touching more threads.



2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 20 40 60 80 100 120

C
PU

C
yc

le
s

Number of Threads

explicit link

Figure 9. Cost for canceling an IPC: The cost of aborting an IPC operation
scales linearly with the length of the path to the root node.

Cost of Modifying the Inheritance Tree

Updates to the inheritance tree are required when the link
between two threads in the tree is broken. Possible reasons
include thread deletion, abortion of an ongoing IPC between
two threads, or revocation of the communication channel
between the client and its server.

Breaking a link in the inheritance tree requires the deletion
of the IPC connection between the affected threads and a
traversal of the inheritance tree down to the leaf to check
for blocked timeslices. If blocked timeslices are found, the
kernel performs a staggered wakeup for them.

To avoid taking any locks in the IPC path, the IPC
connection is deleted on the CPU on which the client, server,
and the priority inheritance tree are located. In case the
deletion was initiated by a thread on a different processor,
the remote CPU must send an inter-processor interrupt to
break the link. However, the costly part of the tree traversal
down to the root is performed by the initiating thread on the
remote CPU.

Figure 9 shows the cost for an inheritance tree update. We
measured the implementation where helping and donation
links are explicitly tracked in the kernel and the update
was triggered from a remote processor. A thread running on
one CPU is aborted by a remote thread running on another
CPU, so that an additional cross-processor synchronization
is included in the overhead. The overhead depends on the
length of the path from the aborted thread to the root node.
The number of cycles required for breaking a link increases
linearly with the length of path in the inheritance tree. The
absolute duration to update the inheritance tree is less than
5µs for a path length of up to 64 threads and less than 8µs
for up to 512 threads. To date we have not observed calling
depths of more than 16 threads in real-world scenarios.

VI. Conclusion

We have designed a novel mechanism that implements
priority and bandwidth inheritance in a component-based
system. Our algorithm does not limit the preemptibility of
the kernel, and keeps the runtime cost on the performance-
critical IPC path minimal. The algorithm supports threads
that block while holding shared resources, and can detect
livelocks. Our evaluation shows that the performance over-
head of the dependency tracking scales linearly with the
number of threads in a call chain.

Acknowledgements

We thank Jean Wolter and the anonymous reviewers for
their comments on an earlier version of this paper.

References

[1] B. W. Lampson and D. D. Redell, “Experience with Processes
and Monitors in Mesa,” Communications of the ACM, vol. 23,
no. 2, pp. 105–117, 1980.

[2] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization,”
IEEE Transactions on Computers, vol. 39, no. 9, pp. 1175–
1185, 1990.

[3] Z. Deng and J. W.-S. Liu, “Scheduling Real-time Applications
in an Open Environment,” in Proceedings of the 18th IEEE
Real-Time Systems Symposium (RTSS). IEEE Computer
Society, 1997, pp. 308–319.

[4] C. L. Liu and J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,” Jour-
nal of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[5] G. Lipari, G. Lamastra, and L. Abeni, “Task Synchroniza-
tion in Reservation-Based Real-Time Systems,” IEEE Trans.
Comput., vol. 53, no. 12, pp. 1591–1601, 2004.

[6] U. Steinberg and B. Kauer, “NOVA: A Microhypervisor-
Based Secure Virtualization Architecture,” in Proceedings
of the 5th ACM SIGOPS/EuroSys European Conference on
Computer Systems. ACM, 2010, pp. 209–222.

[7] J. Liedtke, “Improving IPC by Kernel Design,” in Proceedings
of the 14th ACM Symposium on Operating Systems Principles
(SOSP). ACM, 1993, pp. 175–188.

[8] S. Ruocco, “Real-Time Programming and L4 Microkernels,”
in In Proceedings of the 2006 Workshop on Operating System
Platforms for Embedded Real-Time Applications, 2006.

[9] M. Hohmuth, “Pragmatic Nonblocking Synchronization for
Real-Time Systems,” Ph.D. dissertation, TU Dresden, Ger-
many, 2002.

[10] U. Steinberg, J. Wolter, and H. Härtig, “Fast Component
Interaction for Real-Time Systems,” in Proceedings of the
17th Euromicro Conference on Real-Time Systems (ECRTS).
IEEE Computer Society, 2005, pp. 89–97.



[11] D. Faggioli, G. Lipari, and T. Cucinotta, “An Efficient
Implementation of the Bandwidth Inheritance Protocol for
Handling Hard and Soft Real-Time Applications in the Linux
Kernel,” in Proceedings of the 4th International Workshop
on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT), 2008, pp. 1–10.

[12] Linux Community, “Linux Realtime Patches,” 2010, April
2010. [Online]. Available: http://rt.wiki.kernel.org

[13] S. Rostedt, “RT-mutex Implementation Design,” 2010, Doc-
ument shipping with the Linux 2.6 kernel sources, file:
[Documentation/rt-mutex-design.txt].

[14] D. Niehaus and group, “Proxy Execution in Group Schedul-
ing,” 2010, April 2010. [Online]. Available: http://www.ittc.
ku.edu/kusp/kusp docs/gs internals manual/index.html

[15] M. Friesbie, D. Niehaus, V. Subramonian, and C. Gill, “Group
Scheduling in Systems Software,” in In Workshop on Parallel
and Distributed Real-Time Systems, 2004.

http://rt.wiki.kernel.org
http://www.ittc.ku.edu/kusp/kusp_docs/gs_internals_manual/index.html
http://www.ittc.ku.edu/kusp/kusp_docs/gs_internals_manual/index.html

	I Introduction
	II Background
	III Related Work
	IV Implementation
	V Evaluation
	VI Conclusion
	References

