

Minimize your TCB using a Microkernel-Based System

Udo Steinberg

Agenda

- The Fundamental Flaw in Today's Security Model
- Building a Trustworthy Trusted Computing Base
 - Microkernel / Microhypervisor
 - Capability-Based Access Control
 - Formal Verification
 - > Active Security
- Advanced x86 Security Technologies
- ✤ Q & A

Trusted Computing Base

- "A small amount of software and hardware that security depends on and that we can distinguish from a much larger amount that can misbehave without affecting security"
 (B. Lampson)
- From a security perspective it is desirable to
 - Minimize the Trusted Computing Base (TCB)
 - Implement Fine-Grain Functional Disaggregation (Modularity)
 - Enforce the Principle of Least Authority (POLA)
- Size of the TCB is application-specific

The Fundamental Flaw in Today's Security Model

- Significant parts of the code base are trusted, but not trustworthy
 - Millions of SLOC in modern kernels, ²/₃ of it in device drivers (Linux 6.8: ~25 million)
- Huge attack surface for code running with
 highest execution privileges
 - Security controls can be silently disarmed
 because they run at the same privilege level
 that they are trying to protect

Virtualization / Operating System Encapsulation

- Using virtualization replaces
 physical with logical isolation
- Hypervisor layer increases
 the TCB size further
- Existing security problems
 move one layer down
- What have we gained?

Summary: Castles Built on a Foundation of Sand

- Complex systems software with
 exploitable security vulnerabilities
- Defenders operate at the same privilege level as attackers
- Contemporary security software can
 be subverted by kernel-mode malware
- Traditional security model is failing against advanced attacks

BedRock Systems

Next-Generation Workload & Runtime Security

BedRock Systems

Silicon Valley Based, Venture Capital Funded Startup

> Highly distributed: HQ in San Francisco, offices in Boston, Germany, Bangalore, ...

Operating Systems Experts

> Building a very small and trustworthy TCB (around the NOVA Microhypervisor)

Formal Methods Experts

> Proving mathematically that the BedRock TCB conforms to its specifications

Security Experts

Using the BedRock TCB to introspect and harden VMs and container runtimes

Making the TCB Trustworthy

- Using a Microkernel instead of a Monolithic Kernel
 - Reduces the TCB size by more than 2 orders of magnitude
 - ➤ Enforces modularity and well-defined interfaces ⇒ Formal Verification becomes feasible

Microkernel Construction Principle

- "A concept is tolerated inside the microkernel only if moving it outside the kernel,
 i.e. permitting competing implementations, would prevent the implementation of
 the system's required functionality" (J. Liedtke)
- Design Goals
 - > Make the microkernel as small and fast as possible
 - Provide only mechanisms (but no policies) in the microkernel
 - Implement most system functionality in deprivileged user-mode components
 - > Enforce the principle of least authority among all user-mode components (zero trust)

NOVA: Portable Unified Code Base (x86/Arm)

4.2% ASM	x86 13996 SLOC	37.2% generic		
)	x86_64-specific 8789 SLOC	generic 5207 SLOC	aarch64-specific 5801 SLOC	
		47.3% generic 3.8% Arm 11008 SLOC		
NOVA x86 ELF Binary		NOVA Arm ELF Binary		
 	, ,		896 Bytes Code 328 Bytes Data	

SLOC based on release-24.17.0, binary sizes based on gcc-13.2.0 build. Other versions will produce different numbers.

Microkernel Building Blocks

Protection Domains, Execution/Scheduling Contexts, Portals, Semaphores

From Microkernel to Microhypervisor

- Microkernel interface is not POSIX-compliant
- Reuse of legacy operating systems via VMs
- Deprivileged Virtual-Machine Monitor (VMM)
 - VM exits are forwarded to the user-mode VMM for handling – instruction and device emulation
 - Per-event portal defines subset of architectural state that NOVA transmits to the VMM's UTCB
 - VMM responds with updated state in its UTCB and optionally an event to inject

NOVA Microhypervisor Functionality

- Enumerates platform resources using UEFI/ACPI
- Manages security-critical functions of the platform
 - > CPU, FPU, VMCS, MMU, SMMU (IOMMU), Interrupt Controllers (LAPIC, IOAPIC, GIC)
- Enforces spatial and temporal isolation between host components and VMs
 - Each component runs in its own address space
 - Preemptive fixed-priority round-robin core-local scheduler
- Provides very fast core-local communication via IPC
- \Rightarrow NOVA implements only mechanisms, but no policies

Capability-Based Access Control

- All syscalls based on capabilities
 - No designation without authority
 - No ambient authority
- Principle of least authority (POLA)
 - Components only possess capabilities for the resources they need
- Capabilities can be delegated
 - Permissions can be further restricted

BedRock Ultravisor Architecture

16

Formal Verification: From Source Code to Proof

File-Modular Verification of Concurrent C++ Code using Separation Logic

> Specifications can differ for disciplined vs. undisciplined components

Active Security: Fortify VMs & Container Runtimes

Scaling NOVA from Embedded to Cloud Servers

Advanced x86 Security Technologies

Hardening the Platform Further

Multi-Key Total Memory Encryption (TME-MK)

- KeyID per page encoded in PTE
- Stealing upper physical bits

Unused	KeyID	Physical Address		Attributes		
Unused	KeyID	Physical Address		Attributes		
Unused	KeyID	Physical Address		Attributes		
Unused	KeyID	Physical Address		Attributes		
↓						
Key0	FW TME	W TME Key		Key Programming		
Key1	AES-XTS-128		• • • • • • • • • • • • • • • • • • • •		g	
Key2	AES-XTS	-256	random/tenar		m/tenant	
Key3	AES-XTS	-256				
Key4	AES-XTS	-128	DRNG entropy			
Key5	AES-XTS	-128				

Protecting against "Noisy Neighbor" Domains

Cache Allocation Technology (CAT/CDP)

Competitive Capacity Sharing

Exclusive Use

Code Integrity Protection

Long history of paging features raising the bar for code injection attacks

- Non-writable code / Non-executable stack (W^X)
- Supervisor Mode Execution Prevention (SMEP)
- Supervisor Mode Access Prevention (SMAP)
- Mode-Based Execution Control (MBEC) for Stage-2 with XU/XS permission bits
- Code snippets (gadgets) in existing code could still be chained together
 - Control-Flow Hijacking: COP / JOP / ROP attacks
 - Instruction length is fixed on ARM but varies on x86

Control-Flow Enforcement Technology (CET)

- Protects integrity of control-flow graph using x86 hardware features
- Indirect Branch Tracking (Forward-Edge) make ARCH=x86_64 CFP=branch
 - Used with indirect JMP / CALL instructions
 - > Valid branch targets must be marked with ENDBR instruction
 - Requires compiler support (available since gcc-8)
- Shadow Stacks (Backward-Edge)

make ARCH=x86_64 CFP=return

- Used with CALL / RET instructions
- Second stack used exclusively for return addresses
- Can only be written by control-transfer and shadow-stack-management instructions

CET Indirect Branch Tracking

CET Supervisor Shadow Stacks

CALL instruction

Pushes return address onto both stacks

RET instruction

- Pops return address from both stacks
- #CP exception if addresses not equal
- Shadow Stack Management
 - Busy bit in token prevents multi-activation
 - NOVA must unwind supervisor shadow stack during context switches

Trusted Computing

- Once you have a formally verified software stack
 - > and a compiler that produced a qualified set of binaries for the target architecture
- How do you ensure that some computer is running those binaries
 - > and not some other (malicious) software instead
 - before you entrust that computer with your data or secrets
- In other words, how can you
 - either restrict the software that a computer will launch
 - > or determine what software has been launched on a computer

Verified Boot: Static Root of Trust

- Boot policies are enforced during the boot process
- Starting with the Core Root of Trust for Verification, the currently executing module verifies the integrity of the next module against a boot policy (e.g. UEFI db/dbx) ⇒ Chain of Trust
- Integrity measurement is a cryptographic hash \Rightarrow unique + indicative to changes in the module

Measured Boot: Static Root of Trust

- Integrity measurements are extended into TPM PCRs during the boot process
- Starting with the Core Root of Trust for Measurement, the currently executing module extends the launch integrity measurement for the next module into the TPM

Measured Boot: Dynamic Root of Trust

- DRTM Flow lets system boot into an untrustworthy state (initially)
 - Measured Launch later "resets" system into a trustworthy safe state
 - > Takes control of all CPUs and forces them down a protected and measured code path

Trusted Execution Technology: Measured Launch

Trusted Platform Module (TPM)

A verifier can use the crypto agile event log to recompute/validate the composite value in each PCR

Confidential & Trusted Computing Building Blocks

Availability

Cache & Memory Bandwidth Allocation Technology (CAT/CDP/MBA)

Integrity

Control-Flow Enforcement Technology (CET IBT+SSS)

Confidentiality

Total Memory Encryption with Multiple Keys (TME-MK)

Measured Launch & Attestation

Trusted Execution Technology (TXT/CBnT)

Questions and Discussion

The NOVA microhypervisor is licensed under GPLv2 Releases: <u>https://github.com/udosteinberg/NOVA/tags</u> More Information: <u>bedrocksystems.com</u> and <u>hypervisor.org</u>