
Minimize your TCB using a
Microkernel-Based System

Udo Steinberg

Agenda

❖ The Fundamental Flaw in Today’s Security Model

❖ Building a Trustworthy Trusted Computing Base
➢ Microkernel / Microhypervisor

➢ Capability-Based Access Control

➢ Formal Verification

➢ Active Security

❖ Advanced x86 Security Technologies

❖ Q & A

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig2

Trusted Computing Base

❖ “A small amount of software and hardware that security depends on and that we

can distinguish from a much larger amount that can misbehave without affecting

security” (B. Lampson)

❖ From a security perspective it is desirable to
➢ Minimize the Trusted Computing Base (TCB)

➢ Implement Fine-Grain Functional Disaggregation (Modularity)

➢ Enforce the Principle of Least Authority (POLA)

❖ Size of the TCB is application-specific

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig3

The Fundamental Flaw in Today’s Security Model

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig4

user
kernel

App AppAppApp

Monolithic Operating System Kernel

Hardware

Device Driver Exploit

Privilege Escalation

App AppAppApp
❖ Significant parts of the code base are

trusted, but not trustworthy
➢ Millions of SLOC in modern kernels, ⅔ of it in

device drivers (Linux 6.8: ~25 million)

❖ Huge attack surface for code running with

highest execution privileges
➢ Security controls can be silently disarmed

because they run at the same privilege level

that they are trying to protect

Physical Machine

Virtualization / Operating System Encapsulation

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig5

Virtual Machine

guest
host

Monolithic Hypervisor

Device Driver Exploit

VM Escape

App App

OS Kernel

App App

OS Kernel

Legacy Hardware Virtualization-Capable Hardware

Virtual Machine

App App

OS Kernel

Lateral Movement

❖ Using virtualization replaces

physical with logical isolation

❖ Hypervisor layer increases

the TCB size further

❖ Existing security problems

move one layer down

❖ What have we gained?

Summary: Castles Built on a Foundation of Sand

❖ Complex systems software with

exploitable security vulnerabilities

❖ Defenders operate at the same

privilege level as attackers

❖ Contemporary security software can

be subverted by kernel-mode malware

❖ Traditional security model is failing

against advanced attacks

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig6

BedRock Systems

Next-Generation Workload & Runtime Security

BedRock Systems

❖ Silicon Valley Based, Venture Capital Funded Startup
➢ Highly distributed: HQ in San Francisco, offices in Boston, Germany, Bangalore, …

❖ Operating Systems Experts
➢ Building a very small and trustworthy TCB (around the NOVA Microhypervisor)

❖ Formal Methods Experts
➢ Proving mathematically that the BedRock TCB conforms to its specifications

❖ Security Experts
➢ Using the BedRock TCB to introspect and harden VMs and container runtimes

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig8

Making the TCB Trustworthy

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig9

Monolithic Kernel

Hardware

Device
Drivers

Network
Stacks

Process
Management

Memory
Management

Hardware

Microkernel
Processes SchedulingIPCThreads

Process
Management

Memory
Management

Device
Drivers

File
Systems

Network
Stacks

ApplicationApplicationApplicationApplicationApplicationApplication

File
Systems

user
kernel

❖ Using a Microkernel instead of a Monolithic Kernel
➢ Reduces the TCB size by more than 2 orders of magnitude

➢ Enforces modularity and well-defined interfaces ⇒ Formal Verification becomes feasible

Processes SchedulingIPCThreads

user
kernel

461 syscalls (Linux 6.8)

15 syscalls (NOVA)

Microkernel Construction Principle

❖ “A concept is tolerated inside the microkernel only if moving it outside the kernel,

i.e. permitting competing implementations, would prevent the implementation of

the system’s required functionality” (J. Liedtke)

❖ Design Goals
➢ Make the microkernel as small and fast as possible

➢ Provide only mechanisms (but no policies) in the microkernel

➢ Implement most system functionality in deprivileged user-mode components

➢ Enforce the principle of least authority among all user-mode components (zero trust)

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig10

Arm
11008 SLOC

x86
13996 SLOC

NOVA: Portable Unified Code Base (x86/Arm)

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig11

37.2% generic

47.3% generic

SLOC based on release-24.17.0, binary sizes based on gcc-13.2.0 build. Other versions will produce different numbers.

4.2% ASM

3.8% ASM

generic
5207 SLOC

x86_64-specific
8789 SLOC

aarch64-specific
5801 SLOC

NOVA x86 ELF Binary

❖ 86377 Bytes Code
❖ 2520 Bytes Data

NOVA Arm ELF Binary

❖ 77896 Bytes Code
❖ 328 Bytes Data

Microkernel Building Blocks

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig12

NOVA Microhypervisor

PDA

ring 3
ring 0

PDB

ECClient ECServer
UTCB UTCB

PT
ipc_call (SEL PT, MTD)

SC

NOVA Microhypervisor

PDA

ring 3
ring 0

PDB

ECClient ECServerUTCB UTCB

ipc_reply (MTD)

SC

❖ Protection Domains, Execution/Scheduling Contexts, Portals, Semaphores

Very fast synchronous

IPC with time donation

and priority inheritance

Before IPC Call Before IPC Reply

From Microkernel to Microhypervisor

❖ Microkernel interface is not POSIX-compliant

❖ Reuse of legacy operating systems via VMs

❖ Deprivileged Virtual-Machine Monitor (VMM)
➢ VM exits are forwarded to the user-mode VMM for

handling – instruction and device emulation

➢ Per-event portal defines subset of architectural

state that NOVA transmits to the VMM’s UTCB

➢ VMM responds with updated state in its UTCB

and optionally an event to inject

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig13

NOVA Microhypervisor

VM

ring 3h
ring 0h

VMM

vCPU

Handler EC

UTCB

PT

VM
Exit

SC

guest
host VM

Resume

NOVA Microhypervisor Functionality

❖ Enumerates platform resources using UEFI/ACPI

❖ Manages security-critical functions of the platform
➢ CPU, FPU, VMCS, MMU, SMMU (IOMMU), Interrupt Controllers (LAPIC, IOAPIC, GIC)

❖ Enforces spatial and temporal isolation between host components and VMs
➢ Each component runs in its own address space

➢ Preemptive fixed-priority round-robin core-local scheduler

❖ Provides very fast core-local communication via IPC

⇒ NOVA implements only mechanisms, but no policies

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig14

Capability
Selector

Microhypervisor
Objects

Capability-Based Access Control

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig15

Per-PD
Object Space

PD
Protection Domain

EC
Execution Context

EC
Execution Context

SC
Scheduling Context

PT
Portal

SC Capability

PD Capability

PT Capability

5

Perm

Perm

EC Capability

Perm

Perm

❖ All syscalls based on capabilities
➢ No designation without authority

➢ No ambient authority

❖ Principle of least authority (POLA)
➢ Components only possess capabilities

for the resources they need

❖ Capabilities can be delegated
➢ Permissions can be further restricted

Fo
rm

al
 V

er
ifi

ca
tio

n
of

B
ar

e
M

et
al

 P
ro

pe
rt

y™

Ultravisor™

BedRock Ultravisor Architecture

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig16

VM
Linux

VM
Appliance

user
kernel

VM
Unikernel

VM
RTOS

VM
Container
Runtime

guest
host

NOVA Microhypervisor
(ARMv8-A or Intel x86-64)

Master Controller
(Root Protection Domain)

UART
Driver

Storage
Driver

Network
Driver

Platform
Manager

Service
Manager

UART Multiplexer
(Virtual Console Switch)

VirtIO Socket Multiplexer Network Multiplexer
(Virtual Ethernet Switch)

VMM VMM VMM VMM VMM

Host
Applications

Formal Verification: From Source Code to Proof

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig17

foo.cpp
C++ Source Code

foo_cpp.v
AST Coq Representation

foo_cpp_spec.v
Source Code Specification

C++ Semantics
Inheritance, Overloading,
Templates, References

Proof Scripts
Hint-Based Automation

foo_cpp_proof.vo
Machine-Checked Proof

coqc
Coq Compiler

cpp2v
Clang-Based Tool

/*
 * \arg{v1} “x” (Vint v1)
 * \arg{v2} “y” (Vint v2)
 * \post{}[Vint (trim 32 (v1 + v2))] emp
 */
auto add_func (uint32_t x, uint32_t y)
{
 return x + y;
}

❖ File-Modular Verification of Concurrent C++ Code using Separation Logic
➢ Specifications can differ for disciplined vs. undisciplined components

Secure Vantage Point

Active Security: Fortify VMs & Container Runtimes

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig18

VM
(Enlightened)

VMM

guest
host

Active
Security

VA
S

VM
I

VM
(Non-Enlightened)

VM
(Unsecured)

VMM Active
Security VMM

Observe
Non-Bypassable Monitoring

Detect
Invisible Instrumentation

Protect
Software Hardening

Attackers with guest kernel privileges

cannot evade or disarm the active

security mechanisms implemented in

the imperceptible Ultravisor layer

NOVA Microhypervisor
(ARMv8-A or Intel x86-64)

x86_64aarch64

Cloud

Allwinner
A64

HiSilicon
Hi3660

NXP
i.MX8

Renesas
R-Car

Amlogic
G12B, SM1

Scaling NOVA from Embedded to Cloud Servers

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig19

Texas Instruments
J721E

NVIDIA
Tegra X1/X2, Xavier

Rockchip
RK3399

Qualcomm
Snapdragon 670

Xilinx
Zynq Ultrascale+

Same NOVA Binary
make ARCH=aarch64 BOARD=acpi

Raspberry Pi 4
4C Arm Cortex-A72 (Maia)

Raspberry Pi 5
4C Arm Cortex-A76 (Enyo)

AWS Graviton2
64C Arm Neoverse N1 (Ares)

c6g.metal

AWS Graviton3
64C Arm Neoverse V1 (Zeus)

c7g.metal

Same NOVA Binary
make ARCH=x86_64

1st Gen Intel Xeon-SP
72T Intel Xeon Platinum 8124M (SKX)

c5n.metal

3rd Gen Intel Xeon-SP
128T Intel Xeon Platinum 8375C (ICX)

c6i.metal

4th Gen Intel Xeon-EP
72T Intel Xeon E5-2686 v4 (BDW-EP)

i3.metal

2nd Gen Intel Xeon-SP
96T Intel Xeon Platinum 8259CL (CLX)

m5n.metal

Intel NUC11TN Pro
8T Intel Core i7-1185G7 (TGL)

Intel NUC12WS Pro
16T Intel Core i7-1270P (ADL)

Intel NUC13LC Pro
20T Intel Core i7-1370P (RPL)

UP Squared
4C Intel Pentium N4200 (APL)

UP Squared v2
4C Intel Pentium J6426 (EHL)

youyeetoo X1 SBC
4C Intel Celeron N5105 (JSL)

4th Gen Intel Xeon-SP
24T Intel Xeon Silver 4410Y (SPR)

3rd Gen Intel Xeon-SP
80T Intel Xeon Silver 4316 (ICX)

2nd Gen Intel Xeon-SP
48T Intel Xeon Silver 4214R (CLX)

All trademarks and brand names are the
property of their respective owners. All
company and product names used in these
slides are for identification purposes only.
Use of these names, trademarks and
brands does not imply endorsement.

Intel Xeon-D
32T Intel Xeon D-2775TE (ICX-D)

Intel NUC8PN Pro
8T Intel Core i7-8665U (WHL)

4th Gen Intel Xeon-SP
192T Intel Xeon Platinum 8488C (SPR)

c7i.metal

Advanced x86 Security Technologies

Hardening the Platform Further

DRAM or NVRAM

SoC

Multi-Key Total Memory Encryption (TME-MK)

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig21

Cores

Caches

VM

MEE

VMVMVM VM

VMM VMM VMMVMMVMM

DRNG

Unused KeyID Physical Address Attributes

Unused KeyID Physical Address Attributes

Unused KeyID Physical Address Attributes

Unused KeyID Physical Address Attributes

❖ Key Programming

➢ random/tenant

➢ DRNG entropy

❖ KeyID per page encoded in PTE

❖ Stealing upper physical bits

Key3
Key4
Key5

Key1
Key2

AES-XTS-128
AES-XTS-256
AES-XTS-256
AES-XTS-128
AES-XTS-128

Key0 FW TME Key

NOVA Microhypervisor

Protecting against “Noisy Neighbor” Domains

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig22

L1 / L2 Cache

Core 0 Core 3Core 1 Core 2

L1 / L2 Cache L1 / L2 Cache L1 / L2 Cache

NOVA Microhypervisor

VMs Noisy
VMRT-VMVMs

Last-Level Cache Shared Cache Capacity

Shared Interconnect

Shared Memory Bandwidth

Main Memory

Cache Allocation Technology (CAT/CDP)

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig23

012345678910111213141519 18 17 16

COS 0

COS 1

COS 2

COS 3

COS 4

COS 5

20%

50%

30%

15%

35%

25%

Exclusive UseCompetitive Capacity Sharing

Code Integrity Protection

❖ Long history of paging features raising the bar for code injection attacks
➢ Non-writable code / Non-executable stack (W^X)

➢ Supervisor Mode Execution Prevention (SMEP)

➢ Supervisor Mode Access Prevention (SMAP)

➢ Mode-Based Execution Control (MBEC) for Stage-2 with XU/XS permission bits

❖ Code snippets (gadgets) in existing code could still be chained together
➢ Control-Flow Hijacking: COP / JOP / ROP attacks

➢ Instruction length is fixed on ARM but varies on x86

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig24

Control-Flow Enforcement Technology (CET)

❖ Protects integrity of control-flow graph using x86 hardware features

❖ Indirect Branch Tracking (Forward-Edge) make ARCH=x86_64 CFP=branch

➢ Used with indirect JMP / CALL instructions

➢ Valid branch targets must be marked with ENDBR instruction

➢ Requires compiler support (available since gcc-8)

❖ Shadow Stacks (Backward-Edge) make ARCH=x86_64 CFP=return

➢ Used with CALL / RET instructions

➢ Second stack used exclusively for return addresses

➢ Can only be written by control-transfer and shadow-stack-management instructions

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig25

❖ CALL / JMP Instruction
➢ Next instruction must be ENDBR

➢ #CP exception otherwise

CET Indirect Branch Tracking

ffffffff80003a60 <Buddy::free(void*)>:

ffffffff80003a60: endbr64

ffffffff80003a64: test %rdi,%rdi

ffffffff80003a67: je ffffffff80003a84

ffffffff80003a69: sub 0xf1e8(%rip),%rdi

ffffffff80003a70: shr $0xc,%rdi

ffffffff80003a74: imul $0x18,%rdi,%rdi

ffffffff80003a78: add 0xf1d1(%rip),%rdi

ffffffff80003a7f: jmp ffffffff80003962

ffffffff80003a84: ret

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig26

call *0x30(%rbx)

CET Supervisor Shadow Stacks

❖ CALL instruction
➢ Pushes return address onto both stacks

❖ RET instruction
➢ Pops return address from both stacks

➢ #CP exception if addresses not equal

❖ Shadow Stack Management
➢ Busy bit in token prevents multi-activation

➢ NOVA must unwind supervisor shadow

stack during context switches

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig27

Supervisor
Shadow Stack

Regular
Data Stack

Local Variables

Parameters

Local Variables

Parameters

Local Variables

Return Address

Shadow Stack Token

Return Address

Return Address

Return Address

Return Address

Return Address

Trusted Computing

❖ Once you have a formally verified software stack
➢ and a compiler that produced a qualified set of binaries for the target architecture

❖ How do you ensure that some computer is running those binaries
➢ and not some other (malicious) software instead

➢ before you entrust that computer with your data or secrets

❖ In other words, how can you
➢ either restrict the software that a computer will launch

➢ or determine what software has been launched on a computer

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig28

TCB

M, V, XM, V, XM, V, XM, V, X

Verified Boot: Static Root of Trust

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig29

HypervisorBootloaderUEFIEarly
Firmware

Boot ROM
(SRTM)

M - Measure
V - Verify
X - Execute

❖ Boot policies are enforced during the boot process

❖ Starting with the Core Root of Trust for Verification, the currently executing module verifies the

integrity of the next module against a boot policy (e.g. UEFI db/dbx) ⇒ Chain of Trust

❖ Integrity measurement is a cryptographic hash ⇒ unique + indicative to changes in the module

Fail Boot
LogoFAIL

db dbxfuses

TCB

M, E, XM, E, XM, E, XM, E, X

Measured Boot: Static Root of Trust

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig30

HypervisorBootloaderUEFIEarly
Firmware

Boot ROM
(SRTM)

TPM
PCRs 0-15

M - Measure
E - Extend PCR
X - Execute

❖ Integrity measurements are extended into TPM PCRs during the boot process

❖ Starting with the Core Root of Trust for Measurement, the currently executing module extends

the launch integrity measurement for the next module into the TPM

DMA Attacks

Arbitrarily Extensible Code
“The Gap” in the Chain of Trust

No longer part of the Trusted Computing Base
(not verifiable/certifiable anyway)

TCB

…

Measured Boot: Dynamic Root of Trust

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig31

BootloaderUEFIEarly
Firmware

Boot ROM
(SRTM)

TPM
PCRs 17-23

M - Measure
E - Extend PCR
X - Execute

❖ DRTM Flow lets system boot into an untrustworthy state (initially)

➢ Measured Launch later “resets” system into a trustworthy safe state

➢ Takes control of all CPUs and forces them down a protected and measured code path

Late Launch
(DRTM) HypervisorM, E, X

Launch Event

Trusted Execution Technology: Measured Launch

32 Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig

Time

ILP

RLPs

GETSEC[SENTER]
ILP broadcasts SENTER message

Each CPU responds to SENTER event

Each CPU issues ACK

ILP continues once all ACKs received

All CPUs in secure environment

GETSEC[WAKEUP] for RLPs

SINIT launches MLE

ILP launches SINIT ACM

…

SINIT
ACM

Unrecoverable failure causes TXT Shutdown

MLE (NOVA)SENTER
Event

SENTER
Event Measured Launch Environment (NOVA)Load ACM

Load MLE
Launch
(DRTM)

Design Decision
NOVA late-launches itself

(~650 LOC)

Crypto Agile Event Log

Trusted Platform Module (TPM)

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig33

TPM Hardware

A verifier can use the crypto agile event log to recompute/validate the composite value in each PCR

Measuring
Entity

TPM2_PCR_Extend

Example Integrity Measurement (SHA2-256)
694ffc19a50f75df0aa430dbbd35110fe2a7ce1b7eb9ac6bb771180e992f1b2c

PCR17, Event, Digest[]

PCR19, Event, Digest[]

PCR18, Event, Digest[]

PCR17, Event, Digest[]

PCR19, Event, Digest[]

Log Header

Log Append

STORE pcr, event, digest[] EXTEND pcr, digest =
HashAlg (current || digest)

PCR0

PCR1

PCR17

PCR22

PCR23

Image Source:
Infineon Technologies

Confidential & Trusted Computing Building Blocks

❖ Availability
➢ Cache & Memory Bandwidth Allocation Technology (CAT/CDP/MBA)

❖ Integrity
➢ Control-Flow Enforcement Technology (CET IBT+SSS)

❖ Confidentiality
➢ Total Memory Encryption with Multiple Keys (TME-MK)

❖ Measured Launch & Attestation
➢ Trusted Execution Technology (TXT/CBnT)

Minimize your TCB using a Microkernel-Based System
Udo Steinberg - 2nd Charter of Trust Meetup Braunschweig34

Questions and Discussion

The NOVA microhypervisor is licensed under GPLv2

Releases: https://github.com/udosteinberg/NOVA/tags

More Information: bedrocksystems.com and hypervisor.org

https://github.com/udosteinberg/NOVA/tags
https://bedrocksystems.com/
https://hypervisor.org

