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Abstract
The availability of virtualization features in modern CPUs
has reinforced the trend of consolidating multiple guest
operating systems on top of a hypervisor in order to im-
prove platform-resource utilization and reduce the total cost
of ownership. However, today’s virtualization stacks are
unduly large and therefore prone to attacks. If an adver-
sary manages to compromise the hypervisor, subverting
the security of all hosted operating systems is easy. We
show how a thin and simple virtualization layer reduces the
attack surface significantly and thereby increases the overall
security of the system. We have designed and implemented a
virtualization architecture that can host multiple unmodified
guest operating systems. Its trusted computing base is at
least an order of magnitude smaller than that of existing sys-
tems. Furthermore, on recent hardware, our implementation
outperforms contemporary full virtualization environments.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection;
D.4.7 [Operating Systems]: Organization and Design;
D.4.8 [Operating Systems]: Performance

General Terms Design, Performance, Security

Keywords Virtualization, Architecture

1. Introduction
Virtualization is used in many research and commercial
environments to run multiple legacy operating systems con-
currently on a single physical platform. Because of the
increasing importance of virtualization, the security aspects
of virtual environments have become a hot topic as well.

The most prominent use case for virtualization in enter-
prise environments is server consolidation. Operating sys-
tems are typically idle for some of the time, so that hosting
several of them on a single physical machine can save
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computing resources, power, cooling, and floor space in data
centers. The resulting reduction in total cost of ownership
makes virtualization an attractive choice for many vendors.

However, virtualization is not without risk. The security
of each hosted operating system now additionally depends
on the security of the virtualization layer. Because penetra-
tion of the virtualization software compromises all hosted
operating systems at once, the security of the virtualization
layer is of paramount importance. As virtualization becomes
more prevalent, attackers will shift their focus from breaking
into individual operating systems to compromising entire
virtual environments [20, 28, 40].

We propose to counteract emerging threats to virtual-
ization security with an architecture that minimizes the
trusted computing base of virtual machines. In this paper,
we describe the design and implementation of NOVA — a
secure virtualization architecture, which is based on small
and simple components that can be independently designed,
developed, and verified for correctness. Instead of decom-
posing an existing virtualization environment [27], we took a
from-scratch approach centered around fine-grained decom-
position from the beginning. Our paper makes the following
research contributions:

• We present the design of a decomposed virtualization
architecture that minimizes the amount of code in the
privileged hypervisor. By implementing virtualization at
user level, we trade improved security and lower interface
complexity for a slight decrease in performance.
• Compared to existing full virtualization environments,

our work reduces the trusted computing base of virtual
machines by at least an order of magnitude.
• We show that the additional communication overhead

in a component-based system can be lowered through
careful design and implementation. By using hardware
support for CPU virtualization [37], nested paging [5],
and I/O virtualization, NOVA can host fully virtualized
legacy operating systems with less performance overhead
than existing monolithic hypervisors.

The paper is organized as follows: In Section 2, we provide
the background for our work, followed by a discussion of
related research in Section 3. Section 4 presents the design of
our secure virtualization architecture. In Sections 5, 6, and 7,
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we describe the microhypervisor, the root partition manager,
and the user-level virtual-machine monitor. We evaluate
the performance of our implementation in Section 8 and
compare it to other virtualization environments. Section 9
summarizes our results and outlines possible directions for
future work and Section 10 presents our conclusions.

2. Background
Virtualization is a technique for hosting different guest
operating systems concurrently on the same machine. It
dates back to the mid-1960s [11] and IBM’s mainframes.
Unpopular for a long time, virtualization experienced a
renaissance at the end of the 1990s with Disco [6] and the
commercial success of VMware. With the introduction of
hardware support for full virtualization in modern x86 pro-
cessors [5, 37], new virtualization environments started to
emerge. Typical implementations add a software abstraction
layer that interposes between the hardware and the hosted
operating systems. By translating between virtual devices
and the physical devices of the platform, the virtualization
layer facilitates sharing of resources and decouples the guest
operating systems from hardware.

The most privileged component of a virtual environment,
which runs directly on the hardware of the host machine
is called hypervisor. The functionality of the hypervisor is
similar to that of an OS kernel: abstracting from the underly-
ing hardware platform and isolating the components running
on top of it. In our system, the hypervisor is accompanied
by multiple user-level virtual-machine monitors (VMMs)
that manage the interactions between virtual machines and
the physical resources of the host system. Each VMM
exposes an interface that resembles real hardware to its
virtual machine, thereby giving the guest OS the illusion of
running on a bare-metal platform. It should be noted that
our terminology differs from that used in existing literature
where the terms hypervisor and VMM both denote the single
entity that implements the virtualization functionality. In our
system we use the terms hypervisor and VMM to refer to
the privileged kernel and the deprivileged user component
respectively.

Virtualization can be implemented in different ways [1].
In a fully virtualized environment, a guest operating system
can run in its virtual machine without any modifications
and is typically unaware of the fact that it is being vir-
tualized. Paravirtualization is a technique for reducing the
performance overhead of virtualization by making a guest
operating system aware of the virtualization environment.
Adding the necessary hooks to a guest OS requires access to
its source code. When the source code is unavailable, binary
translation can be used. It rewrites the object code of the
guest OS at runtime, thereby replacing sensitive instructions
with traps to the virtualization layer.

Virtualization can positively or negatively impact secu-
rity, depending on how it is employed. The introduction of

a virtualization layer generally increases the attack surface
and makes the entire system more vulnerable because, in
addition to the guest operating system, the hypervisor and
VMM are susceptible to attacks as well. However, security
can be improved if virtualization is then used to segre-
gate functionality that was previously combined in a non-
virtualized environment. For example, a system that moves
the firewall from a legacy operating system into a trusted
virtual appliance retains the firewall functionality even when
the legacy OS has been fully compromised.

3. Related Work
3.1 Microkernels

We share our motivation of a small trusted computing
base with microkernel-based systems. These systems take
an extreme approach to the principle of least privilege by
using a small kernel that implements only a minimal set of
abstractions. Liedtke [24] identified three key abstractions
that a microkernel should provide: address spaces, threads,
and inter-process communication. Additional functionality
can be implemented at user level. The microkernel approach
reduces the size and complexity of the kernel to an extent
that formal verification becomes feasible [19]. However,
it implies a performance overhead because of additional
communication. Therefore, most of the initial work on L4
focused on improving the performance of IPC [25]. Inspired
by EROS [32], recent microkernels introduced capabilities
for controlling access to kernel objects [3, 19, 21, 33].
In order to support legacy applications in a microkernel
environment, these systems have traditionally hosted a par-
avirtualized legacy operating system, such as L4Linux [13].
Industrial deployments such as OKL4, VMware MVP, and
VirtualLogix use paravirtualization in embedded systems
where hardware support for full virtualization is still limited.
Microkernel techniques have also been employed for im-
proving robustness in Minix [14], to support heterogeneous
cores in the Barrelfish multikernel [3], and to provide high-
assurance guarantees in the Integrity separation kernel [18].
The NOVA microhypervisor and microkernels share many
similarities. The main difference is NOVA’s consideration of
full virtualization as a primary objective.

3.2 Hypervisors

The microkernel approach has been mostly absent in the
design of full virtualization environments. Instead, most
of the existing solutions implement hardware support for
virtualization in large monolithic hypervisors. By applying
microkernel construction principles in the context of full
virtualization, NOVA bridges the gap between traditional
microkernels and hypervisors. In Figure 1, we compare the
size of the trusted computing base for contemporary virtual
environments. The total height of each bar indicates how
much the attack surface of an operating system increases
when it runs inside a virtual machine rather than on bare



hardware. The lowermost box shows the size of the most
privileged component that must be fully trusted.
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Figure 1: Comparison of the TCB size of virtual environments.
NOVA consists of the microhypervisor (9 KLOC), a thin user-
level environment (7 KLOC), and the VMM (20 KLOC). For Xen,
KVM, and KVM-L4 we assume that all unnecessary functionality
has been removed from the Linux kernel, so that it is devoid
of unused device drivers, file systems, and network support. We
estimate that such a kernel can be shrunk to 200 KLOC. KVM adds
approximately 20 KLOC to Linux. By removing support for non-
x86 architectures, QEMU can be reduced to 140 KLOC.

The Xen [2] hypervisor has a size of approximately 100
thousand lines of source code (KLOC) and executes in
the most privileged processor mode. Xen uses a privileged
“domain zero”, which hosts Linux as a service OS. Dom0
implements management functions and host device drivers
with direct access to the platform hardware. QEMU [4]
runs as a user application on top of Linux and provides
virtual devices and an instruction emulator. Although Dom0
runs in a separate virtual machine, it contributes to the
trusted computing base of all guest VMs that depend on its
functionality. In our architecture privileged domains do not
exist. KVM [17] adds support for hardware virtualization to
Linux and turns the Linux kernel with its device drivers into
a hypervisor. KVM also relies on QEMU for implementing
virtual devices and instruction emulation. Unlike Xen, KVM
can run QEMU and management applications directly on
top of the Linux hypervisor in user mode, which obviates
the need for a special domain. Because it is integrated
with the kernel and its drivers, Linux is part of the trusted
computing base of KVM and increases the attack surface
accordingly. KVM-L4 [29] is a port of KVM to L4Linux,
which runs as a paravirtualized Linux kernel on top of an L4
microkernel. When used as a virtual environment, the trusted
computing base of KVM-L4 is even larger than that of
KVM. However, KVM-L4 was designed to provide a small
TCB for L4 applications running side-by-side with virtual
machines while reusing a legacy VMM for virtualization. In
NOVA, the trusted computing base is extremely small both

for virtual machines and for applications that run directly on
top of the microhypervisor.

Commercial virtualization solutions have also aimed for
a reduction in TCB size, but are still an order of magnitude
larger than our system. VMware ESXi [39] is based on
a 200 KLOC hypervisor [38] that supports management
processes running in user mode. In contrast to our approach,
ESXi implements device drivers and VMM functionality
inside the hypervisor. Microsoft Hyper-V [26] uses a Xen-
like architecture with a hypervisor of at least 100 KLOC [22]
and a privileged parent domain that runs Windows Server
2008. It implements instruction and device emulation and
provides drivers for even the most exotic host devices, at the
cost of inflating the TCB size. For ESXi and Hyper-V, we
cannot conduct a more detailed analysis because the source
code is not publicly available.

A different idea for shrinking the trusted computing base
is splitting applications [35] to separate security-critical
parts from the rest of the program at the source-code level.
The critical code is executed in a secure domain while the
remaining code runs in an untrusted legacy OS. ProxOS [36]
partitions application interfaces by routing security-relevant
system calls to trusted VMs.

Virtual machines can provide additional security to an
operating system or its applications. SecVisor [31] uses a
small hypervisor to defend against kernel code injection.
Bitvisor [34] is a hypervisor that intercepts device I/O to
implement OS-transparent data encryption and intrusion
detection. Overshadow [7] protects the confidentiality and
integrity of guest applications in the presence of a com-
promised guest kernel by presenting the kernel with an
encrypted view on application data. In contrast to these
systems, the goal of our work is not to retrofit guest oper-
ating systems with additional protection mechanisms, but to
improve the security of the virtualization layer itself.

Virtualization can also be used to replay [10], debug [16],
and live-migrate [9] operating systems. These concepts are
orthogonal to our architecture and can be implemented on
top of the NOVA microhypervisor in the user-level VMM.
However, they are outside the scope of this paper.

4. NOVA OS Virtualization Architecture
In this section, we present the design of our architecture,
which adheres to the following two construction principles:

1. Fine-grained functional decomposition of the virtualiza-
tion layer into a microhypervisor, root partition manager,
multiple virtual-machine monitors, device drivers, and
other system services.

2. Enforcement of the principle of least privilege among all
of these components.

We show that the systematic application of these principles
results in a minimized trusted computing base for user appli-
cations and VMs running on top of the microhypervisor.



We do not use paravirtualization in our system, because
we neither want to depend on the availability of source code
for the guest operating systems nor make the extra effort of
porting operating systems to a paravirtualization interface.
Depending on the OS, the porting effort might be necessary
for each new release. That said, the NOVA design does not
inherently prevent the application of paravirtualization tech-
niques. If desired, explicit hypercalls from an enlightened
guest OS to the VMM are possible. We also chose not to use
binary translation, because it is a rather complex technique.
Instead our architecture relies on hardware support for full
virtualization, such as Intel VT or AMD-V, both of which
have been available in processors for several years now.
Figure 2 depicts the key components of our architecture.

Microhypervisor
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Figure 2: NOVA consists of the microhypervisor and a user-
level environment that contains the root partition manager, virtual-
machine monitors, device drivers, and special-purpose applications
that have been written for or ported to the hypercall interface.

The hypervisor is the only component that runs in the
most privileged processor mode (host mode, ring 0). Ac-
cording to our first design principle, the hypervisor should
be as small as possible, because it belongs to the trusted
computing base of every other component in the system.
Therefore, we implemented policies and all functionality
that is neither security- nor performance-critical outside
the hypervisor. The resulting microhypervisor comprises
approximately 9000 lines of source code and provides only
simple mechanisms for communication, resource delega-
tion, interrupt control, and exception handling. Section 5
describes these mechanisms in detail. The microhypervisor
drives the interrupt controllers of the platform and a schedul-
ing timer. It also controls the memory-management unit
(MMU) and the IOMMU — if the platform provides one.
User applications run in host mode, ring 3, virtual machines
in guest mode. A virtual machine can host a legacy operating
system with its applications or a virtual appliance. A virtual
appliance is a prepackaged software image that consists of a
small kernel and few special-purpose applications. Secure
virtual appliances, such as a microkernel with an online
banking application, benefit from a small trusted computing
base for virtual machines. Each user application or virtual
machine has its own address space. Applications such as
the VMM manage these address spaces using the hypercall

interface. The VMM exposes an interface to its guest oper-
ating system that resembles real hardware. Because of the
need to emulate virtual devices and sensitive instructions,
this interface is as wide and complex as the x86 architecture,
with its legacy devices and many obscure corner cases.

Apart from the VMM, the user environment on top of
the microhypervisor contains applications that provide addi-
tional OS functionality such as device drivers, file systems,
and network stacks to the rest of system. We have written
NOVA-specific drivers for most legacy devices (keyboard,
interrupt controllers, timers, serial port, VGA) and stan-
dardized driver interfaces (PCI, AHCI). For vendor-specific
hardware devices, we hope to benefit from external work that
generates driver code [8, 30] or wraps existing drivers with
a software adaptation layer. On platforms with an IOMMU,
NOVA facilitates secure reuse of existing device drivers by
directly assigning hardware devices to driver VMs [23].

4.1 Attacker Model

Before we outline possible attacks on a virtual environment
and illustrate how our architecture mitigates the impact of
these attacks, we describe the attacker model. We assume
that an attacker cannot tamper with the hardware, and that
firmware such as CPU microcode, platform BIOS, and
code running in system management mode is trustworthy.
Furthermore, we assume that an attacker is unable to vio-
late the integrity of the booting process. This means, that
code and data of the virtualization layer cannot be altered
during booting, or that trusted-computing techniques such
as authenticated booting and remote attestation can be used
to detect all modifications [12]. However, an attacker can
locally or remotely modify the software that runs on top of
the microhypervisor. He can run malicious guest operating
systems in virtual machines, install hostile device drivers
that perform DMA to arbitrary memory locations, or use a
flawed user-level VMM implementation.

4.2 Attacks on Virtual Environments

For attacks that originate from inside a virtual machine,
we make no distinction between a malicious guest kernel
and user applications that may first have to compromise
their kernel through an exploit. In both cases, the goal of
the attacker is to escape the virtual machine and to take
over the host. The complexity of the interface between a
virtual machine and the host defines the attack surface that
can be leveraged by a malicious guest operating system to
attack the virtualization layer. Because we implemented the
virtualization functionality outside the microhypervisor in
the VMM, our architecture splits the interface in two parts:
1) The microhypervisor provides a simple message-passing
interface that transfers guest state from the virtual machine
to the VMM and back. 2) The VMM emulates the complex
x86 interface and uses the message-passing interface to
control execution of its associated virtual machine.



Guest Attacks

By exploiting a bug in the x86 interface, a VM can take con-
trol of or crash its associated virtual-machine monitor. We
achieve an additional level of isolation by using a dedicated
VMM for each virtual machine. Because a compromised
virtual-machine monitor only impairs its associated VM, the
integrity, confidentiality, and availability of the hypervisor
and other VMs remains unaffected. A vulnerability in the
x86 interface will be common across all instances of a
particular VMM. However, each guest operating system that
exploits the bug can only compromise its own VMM and
virtual machines that do not trigger the bug or use a different
VMM implementation will remain unaffected. In the event
of a compromised virtual-machine monitor, the hypervisor
continues to preserve the isolation between virtual machines.

To attack the hypervisor, a virtual machine would have to
exploit a flaw in the message-passing interface that transfers
state to the VMM and back. Given the low complexity of that
interface and the fact that VMs cannot perform hypercalls, a
successful attack is unlikely. In other architectures where all
or parts of the virtualization functionality are implemented
in the hypervisor, a successful attack on the x86 interface
would compromise the whole virtual environment. In our
architecture the impact is limited to the affected virtual-
machine monitor. A virtual machine cannot attack any other
part of the system directly, because it can only communicate
with its associated virtual-machine monitor.

VMM Attacks

If a virtual machine has taken over its VMM, the attack
surface increases, because the VMM can use the hypercall
interface and exploit any flaw in it. However, from the
perspective of the hypervisor, the VMM is an ordinary
untrusted user application with no special privileges.

Virtual-machine monitors cannot attack each other di-
rectly, because each instance runs in its own address space
and direct communication channels between VMMs do not
exist. Instead an attacker would need to attack the hypervisor
or another service that is shared by multiple VMMs, e.g., a
device driver. Device drivers use a dedicated communication
channel for each VMM. When a malicious VMM performs
a denial-of-service attack by submitting too many requests,
the driver can throttle the communication or shut the channel
to the virtual-machine monitor down.

Device-Driver Attacks

The primary security concern with regard to device drivers
is their use of DMA. If the platform does not include
an IOMMU, then any driver that performs DMA must be
trusted, because it has access to the entire memory of the
system. On newer platforms that provide an IOMMU, the
hypervisor restricts the usage of DMA for drivers to regions
of memory that have been explicitly delegated to the driver.
Each device driver that handles requests from multiple VMs
is responsible for separating their concerns. A compromised

or malicious driver can only affect the availability of its
device and the integrity and confidentiality of all memory
regions delegated to it. Therefore, if a VMM delegates
the entire guest-physical memory of its virtual machine to
a driver, then the driver can manipulate the entire guest.
However, if the VMM delegates only the guest’s DMA
buffers, then the driver can only corrupt the data or transfer
it to the buffers of another guest. Using the IOMMU, the
hypervisor blocks DMA transfers to its own memory region
and restricts the interrupt vectors available to drivers. In
other architectures where drivers are part of the hypervisor,
an insecure device driver can undermine the security of the
entire system.

Remote Attacks

Remote attackers can access the virtual environment through
a device such as a network card. By sending malformed
packets, both local and remote attackers can potentially
compromise or crash a device driver and then proceed with
a device-driver attack. In our architecture the impact of the
exploit is limited to the driver, whereas in architectures with
in-kernel drivers the whole system is at risk. Because we
treat the inside of a virtual machine as a black box, we
make no attempt to prevent remote exploits that target a
guest operating system inside a VM. If such protection is
desired, then a VMM can take action to harden the kernel
inside its VM, e.g., by making regions of guest-physical
memory corresponding to kernel code read-only. However,
such implementations are beyond the scope of this paper.

5. Microhypervisor
The microhypervisor implements a capability-based hyper-
call interface organized around five different types of kernel
objects: protection domains, execution contexts, scheduling
contexts, portals, and semaphores.

For each newly created kernel object, the hypervisor
installs a capability that refers to that object in the capability
space of the creator protection domain. Capabilities are
opaque and immutable to the user; they cannot be inspected,
modified, or addressed directly. Instead, applications access
a capability via a capability selector. The capability selector
is an integral number (similar to a Unix file descriptor) that
serves as an index into the domain’s capability space. The
use of capabilities leads to fine-grained access control and
supports our design principle of least privilege among all
components. Initially, the creator protection domain holds
the only capability to the object. Depending on its own
policy, it can then delegate copies of the capability with the
same or reduced permissions to other domains that require
access to the object. Because the hypercall interface uses ca-
pabilities for all operations, each protection domain can only
access kernel objects for which it holds the corresponding
capabilities. In the following paragraphs we briefly describe
each kernel object. The remainder of this section details the
mechanisms provided by the microhypervisor.



Protection Domain: The kernel object that implements
spatial isolation is the protection domain. A protection
domain acts as resource container and abstracts from the
differences between a user application and a virtual machine.
Each protection domain consists of three spaces: The mem-
ory space manages the page table, the I/O space manages
the I/O permission bitmap, and the capability space controls
access to kernel objects.

Execution Context: Activities in a protection domain are
called execution contexts. Execution contexts abstract from
the differences between threads and virtual CPUs. They can
execute program code, manipulate data, and use portals to
send messages to other execution contexts. Each execution
context has its own CPU/FPU register state.

Scheduling Context: In addition to the spatial isolation
implemented by protection domains, the hypervisor enforces
temporal separation. Scheduling contexts couple a time
quantum with a priority and ensure that no execution context
can monopolize the CPU. The priority of a scheduling
context reflects its importance. The time quantum facilitates
round-robin scheduling among scheduling contexts with
equal importance.

Portal: Communication between protection domains is
governed by portals. Each portal represents a dedicated entry
point into the protection domain in which the portal was
created. The creator can subsequently grant other protection
domains access to the portal in order to establish a cross-
domain communication channel.

Semaphore: Semaphores facilitate synchronization be-
tween execution context on the same or on different
processors. The hypervisor uses semaphores to signal the
occurrence of hardware interrupts to user applications.

5.1 Scheduling

The microhypervisor implements a preemptive priority-
driven round-robin scheduler with one runqueue per CPU.
The scheduling contexts influence how the microhypervisor
makes dispatch decisions. When invoked, the scheduler
selects the highest-priority scheduling context from the
runqueue and dispatches the execution context attached to
it. The scheduler is oblivious as to whether an execution
context is a thread or a virtual CPU. Once dispatched, the
execution context can run until the time quantum of its
scheduling context is depleted or until it is preempted by
the release of a higher-priority scheduling context.

5.2 Communication

We now describe the simple hypervisor message-passing
interface that the components of our system use to com-
municate with each other. Depending on the purpose of
the communication, the message payload differs. Figure 3
illustrates the communication between a virtual machine and
its user-level virtual-machine monitor as an example. During
the creation of a virtual machine, the VMM installs for each

type of VM exit a capability to one of its portals in the
capability space of the new VM. In case of a multiprocessor
VM, every virtual CPU has its own set of VM-exit portals
and a dedicated handler execution context in the VMM.

a) b)
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Figure 3: Communication between a virtual CPU (vCPU) in a VM
and the corresponding handler execution context (EC) in the VMM.
a) Upon a VM exit, the hypervisor delivers a message on behalf
of the virtual CPU through an event-specific portal PX that leads
to the VMM. The communication is similar to a remote function
call because the virtual CPU donates its scheduling context (SC)
to the handler EC bound to the portal. b) After handling the event,
the handler EC invokes the reply capability and thereby directly
responds to the virtual CPU. The donated SC is automatically
returned back to the virtual CPU.

When a virtual CPU executes a sensitive instruction, it
generates a VM exit and the hypervisor gains control. After
looking up the portal that corresponds to the VM-exit type
in the capability space of the virtual machine, the hypervisor
delivers a message through that portal to the corresponding
handler execution context in the VMM. VM exits and excep-
tions evaluate the message transfer descriptor stored in the
portal to determine what guest state the hypervisor should
transmit in the message to the VMM. This performance
optimization minimizes the amount of state that must be
read from the virtual-machine control structure (VMCS).
Access to the VMCS is an expensive operation on older Intel
processors. The virtual CPU donates its scheduling context
to the execution context of the VMM for the duration of
the communication. Because of the donation, the handler in
the VMM inherits the priority of the virtual CPU and the
hypervisor can directly switch to the VMM without having
to invoke the scheduler. Furthermore, the entire handling of
the VM exit, which we describe in Section 7, is accounted to
the time quantum of the virtual CPU.

During the portal traversal, the hypervisor creates a reply
capability that refers to the virtual CPU. Communication
ends when the VMM invokes the reply capability to respond
with a message that contains new state for the virtual CPU.
The hypervisor destroys the reply capability, returns the
donated scheduling context, installs the new state, and finally
resumes the virtual CPU.

Other client-server communication in the user environ-
ment uses the same communication mechanism. The only
difference is that clients can explicitly specify the capability
for the destination portal during the hypercall. Furthermore,
the contents of the message is not guest state, but a protocol-
specific number of parameters and return values.



5.3 Memory Management

The microhypervisor maintains a host address space for each
protection domain. The host page table of an application
in the user-level environment translates host-virtual to host-
physical addresses (HVA→HPA); for a virtual machine the
host page table translates guest-physical to host-physical
addresses (GPA→HPA). A guest operating system that uses
paging inside its virtual machine additionally creates for
each guest address space a guest page table that translates
guest-virtual to guest-physical addresses (GVA→GPA).

On platforms that implement nested paging in hardware,
the MMU consults both the guest and host page tables
to carry out the two-dimensional GVA→GPA→HPA trans-
lation required for performing a memory access [5]. For
this lookup no interaction with virtualization software is
necessary. If the hardware does not support nested paging,
the microhypervisor must perform the same translation in
software and store the result in a shadow page table, which
is used by the memory-management unit. In that case, the
microhypervisor maintains one shadow page table for each
virtual CPU in the system.

Our implementation uses hardware-supported nested
paging where possible and otherwise relies on the virtual
TLB algorithm [15] for filling and flushing the shadow page
tables. The vTLB algorithm requires the microhypervisor
to intercept page faults and instructions that cause TLB
flushes in the guest operating system (CR writes, INVLPG).
To perform a vTLB fill in response to a guest page fault,
the microhypervisor must parse the multi-level guest page
table. Because the guest page table contains guest-physical
addresses, the microhypervisor must, for each level of the
guest page table, perform a GPA→HPA translation via the
host page table and then read the entry using a suitable
HVA→HPA mapping1.

To accelerate the lookup we use the following trick: The
microhypervisor runs on the host page table of the currently
active virtual machine, which causes the MMU to reinterpret
the GPA→HPA translation as a HVA→HPA translation.
Because guest-physical addresses turn into host-virtual ad-
dresses, the microhypervisor can directly dereference guest
page table entries. The two-dimensional page walk becomes
one-dimensional (GVA→GPA) for software and the MMU
handles the other dimension (GPA/HVA→HPA) transpar-
ently. However, the microhypervisor must take action to
recover from a page fault that could occur when derefer-
encing a guest page table entry pointing outside the mapped
guest-physical address space. Because the microhypervisor
occupies the top part of each host page table, the size
of guest-physical memory is restricted to 3 GB on 32-
bit platforms. We compare the performance of memory
virtualization using a virtual TLB to hardware-based nested
paging in Section 8.

1 Physical memory cannot be read directly when paging is active.

6. Root Partition Manager
The microhypervisor does not contain a policy for resource
allocations. At boot time it claims its own memory area and
the memory and I/O resources of security-critical devices
such as interrupt controllers and IOMMUs. Afterwards the
microhypervisor creates the first protection domain, the root
partition manager, which receives capabilities for all remain-
ing memory regions, I/O ports, and interrupts. The root
partition manager performs the initial resource allocation
decisions. Like any other protection domain, it can create
and destroy new protection domains and, by delegating the
corresponding capabilities, assign resources to them. The
creator of a protection domain obtains a capability that can
be used to destroy the domain. This scheme resembles the
recursive address-space model of L4 [24] and facilitates
flexible and dynamic delegation and revocation of resources,
with the ability to make policy decisions at each level [21].

The microhypervisor implements the mechanism for
transferring capabilities during communication. The sender
specifies in the message transfer descriptor one or more
regions of its memory space, I/O space, or capability space
and can optionally reduce the access permissions during the
transfer. The receiver declares a region where it is willing
to accept resource delegations. The microhypervisor only
delegates resources that fit into both the sender- and receiver-
specified ranges. By revoking the respective capabilities, an
execution context can recursively withdraw any resources
that have previously been delegated from its domain to other
protection domains.

7. Virtual-Machine Monitor
The virtual-machine monitor (VMM) runs as a user-level ap-
plication in an address space on top of the microhypervisor
and supports the execution of an unmodified guest operating
system in a virtual machine. It emulates sensitive instruc-
tions and provides virtual devices. The VMM manages the
guest-physical memory of its associated virtual machine by
mapping a subset of its own address space into the host
address space of the VM. The VMM can also map any of
its I/O ports and MMIO regions into the virtual machine to
grant direct access to a hardware device. The VMM is the
handler for all VM-exit events that occur in its associated
virtual machine. For this purpose, it creates a dedicated
portal for each event type and sets the transfer descriptor
in the portals such that the microhypervisor transmits only
the architectural state required for handling the particular
event. For example, the virtual-machine monitor configures
the portal corresponding to the CPUID instruction with a
transfer descriptor that includes only the general-purpose
registers, instruction pointer, and instruction length.

When a VM exit occurs, the microhypervisor sends a
message to the portal corresponding to the VM-exit event
and transfers the requested architectural state of the virtual
CPU to the handler execution context in the VMM. The



virtual-machine monitor can determine the type of virtual-
ization event from the portal that was called and then exe-
cute the correct handler function. The emulation of simple
instructions like CPUID is straightforward: The VMM loads
the general-purpose registers with new values and advances
the instruction pointer to point behind the instruction that
caused the VM exit. By invoking the reply capability, the
VMM transmits the updated state to the microhypervisor
and the virtual CPU can resume execution. When the guest
operating system tries to access a device using memory-
mapped I/O, the virtual CPU generates a host page fault
because the corresponding region of guest-physical memory
is not mapped in the VM. In such cases, the hardware does
not provide more information than the fault address and
instruction pointer. Therefore, the VMM needs to obtain
additional information by decoding the faulting instruction.

7.1 Instruction Emulator

The VMM performs the emulation of faulting instructions
using the following steps: It fetches the opcode bytes of the
instruction from the guest’s instruction pointer and then uses
an instruction decoder to determine the length and operands
of the instruction. If the operands are memory operands,
the instruction emulator fetches them as well. To execute
simple instructions, the emulator calls an instruction-specific
assembly snippet and for more complex instructions a C
function. The execution of an instruction can cause an
exception such as division by zero. The VMM provides fixup
code to handle such cases. After the emulation is complete,
the VMM writes the results of the execution back to registers
or memory and advances the instruction pointer. The current
implementation of the emulator is mature enough to run even
obscure programs such as bootloaders.

7.2 Device Emulation

The virtual-machine monitor provides virtual devices for
its guest operating system. Each virtual device is modeled
as a software state machine that mimics the behavior of
the corresponding hardware device. Whenever an instruction
reads from or writes to an I/O port or memory-mapped
I/O register, the VMM updates the state machine of the
corresponding device model similar to how the hardware
device would update its internal state. Not all reads and
writes to a virtual device require interception by the VMM.
For example, the frame buffer of a graphics device can be
mapped directly into the virtual machine. Likewise, device
registers without read side effects can be mapped read-only.

A careful selection of virtual devices in the VMM is
beneficial for lowering the I/O virtualization overhead. The
emulation of a device that requires fewer VM exits to be
programmed is preferable, because it reduces the number of
round-trips to the VMM. Devices with DMA support and
interrupt coalescing can additionally limit the overhead for
copying data and handling interrupts.

7.3 Interaction with Host Device Drivers

Whenever the guest operating system has programmed its
virtual device to perform an operation such as a disk read, the
VMM needs to contact the device driver for the host device
to deliver the data. Figure 4 shows how the virtual-machine
monitor handles a read request on the virtual disk controller.

Guest VM VMM

Model
Disk

1) VM exit

5) VM resume

8) inject vIRQ

DiskDisk Server

Driver
Disk

2) read

4) issued

7) completed 6) IRQ

3) issue cmd

vCPU

shared memory

Figure 4: Interaction of a device model with the driver of the
corresponding host device. Dashed lines indicate inter-process
communication and dotted lines denote hardware operations.

When the virtual CPU performs a memory-mapped I/O
access, it causes a VM exit (1). The microhypervisor sends
a fault message to the virtual-machine monitor because
the region of guest-physical memory corresponding to the
disk controller is not mapped in the host address space
of the virtual machine. The VMM decodes the instruction
and determines that the instruction accesses the virtual disk
controller. By executing the instruction, the virtual-machine
monitor updates the state machine of the disk model.

After the guest operating system has programmed the
command register of the virtual disk controller to read a
block, the VMM sends a message to the disk server to
request the data (2). The device driver in the disk server
programs the physical disk controller with a command to
read the block into memory (3). The disk driver requests a
DMA transfer of the data directly into the memory of the
virtual machine. It then returns control back to the VMM (4),
which resumes the virtual machine (5).

Once the block has been read from disk, the disk con-
troller generates an interrupt to signal completion (6). The
disk server writes completion records for all finished re-
quests into a region of memory shared with the VMM.
Once the VMM has received a notification message that disk
operations have completed (7), it updates the state machine
of the device model to reflect the completion and signals an
interrupt at the virtual interrupt controller. During the next
VM exit, the VMM injects the pending interrupt into the
virtual machine (8).

7.4 BIOS Virtualization

Most operating systems require the support of the BIOS at
boot time. The BIOS provides functions for screen output
and disk access until the corresponding drivers of the op-
erating system have been loaded. Other virtualization im-
plementations inject a virtual BIOS into the guest operating
system and execute that BIOS inside the VM. This approach
has the disadvantage that every I/O operation performed by
the virtual BIOS causes a fault. Furthermore, the execution



of BIOS code is a slow process because most of the code
runs in real-mode and needs to be emulated.

A more efficient solution is to move the BIOS into the
virtual-machine monitor, which facilitates direct access to
the device models without expensive transitions between
the virtual machine and the VMM. Furthermore, the code
of the virtual BIOS can be hidden from the guest OS. In
our implementation, the BIOS is integrated with the VMM.
It provides the standard BIOS services to guest operating
systems and implements booting via the multiboot standard.

7.5 Multiprocessor Virtualization

The NOVA interface supports the virtualization of mul-
tiprocessor guest operating systems. The microhypervisor
provides semaphores for cross-processor synchronization
and implements a hypercall that allows the VMM to recall
the virtual CPUs of its associated virtual machine.

For a virtual machine with multiple processors, the
VMM creates the desired number of virtual CPUs and then
maps them to physical processors by assigning appropriate
scheduling contexts. For each virtual CPU, there exists a
dedicated handler in the form of an execution context in
the VMM, which resides on the same physical processor as
the virtual CPU. Because each handler maintains its own
instance of the instruction emulator, the VMM can handle
most VM exits by different virtual CPUs in parallel, without
the need for any locking or cross-processor signaling.

However, when multiple virtual CPUs access a device
model concurrently, the VMM must serialize the operations
in such a way that the atomicity of transactions is maintained
and state changes follow the expected behavior of the device.
For simple cases such as toggling a status bit in a device
register, the use of atomic instructions is sufficient. For
updates to more complex data structures, the VMM employs
the semaphore interface of the microhypervisor to guarantee
mutual exclusion.

When an interrupt becomes pending for a virtual CPU
that is currently running, the VMM issues a recall operation.
Upon a recall, the microhypervisor forces the virtual CPU to
take a VM exit, which sends it back to the virtual-machine
monitor, so that the VMM can inject the interrupt in a timely
manner. For example, when a guest OS broadcasts an inter-
processor interrupt to perform a global TLB shootdown, the
VMM recalls all virtual CPUs of its associated VM to inject
the pending interrupt. The interrupt handler of the guest
operating system then runs on each virtual CPU and executes
the TLB flush operation locally.

8. Evaluation
We evaluated the performance of our implementation on an
Intel machine based on a DX58SO motherboard with 3GB
DDR3 RAM, a Core i7 CPU with 2.67 GHz, and a 250GB
Hitachi SATA disk. To improve the accuracy of our results,
we disabled Hyper-Threading and Turbo Boost on the CPU.

8.1 Linux Kernel Compilation

Our first benchmark measures the wall-clock time required
for compiling an x86 Linux 2.6.32 kernel from source code
using the default configuration. The compilation starts with
a cold buffer cache and uses 4 parallel jobs to minimize the
effect of disk delays. The results are the median of several
dozen trials. The bars labeled Native in Figure 5 are our
baseline and show the time for compiling Linux on a bare-
metal machine running Linux 2.6.32 with one physical CPU
and 512 MB RAM. The other bars show the same Linux
system running in different virtual environments, each with
one virtual CPU and 512 MB of guest-physical memory.

To measure the overhead of nested paging, we created a
virtual machine that used large host pages and was config-
ured not to generate any VM exits during the benchmark.
For this purpose we disabled all intercepts and assigned all
host devices and interrupts directly to the guest. The bar
labeled Direct shows that using nested paging results in a
0.6% performance decrease, which we attribute to the higher
page-walk cost during TLB fills. It should be noted that
this bar represents a limit for this particular benchmark and
hardware configuration, which no virtual environment using
nested paging can exceed. The third bar illustrates that our
implementation has an overhead of less than 1% when using
nested paging with 2 MB host pages and TLB entries tagged
with a virtual processor identifier (VPID). The next four bars
present the benchmark numbers for KVM 2.6.32, Xen 3.4.2,
VMWare ESXi 4.0 U12, and Microsoft Hyper-V Build 7100.

The next set of bars shows the benefit of tagged TLB
entries. Without VPIDs the CPU needs to flush the hardware
TLB during VM transitions, which adds several seconds to
a Linux kernel compilation run. If the VMM uses 4 KB host
pages to facilitate fine-grained paging of virtual machines,
the overhead increases by approximately 2%, as shown in
the third set of bars. The use of small host pages does not
result in more VM exits. However, it causes higher pressure
on the hardware TLB and leads to more capacity evictions
and TLB fills. The fourth set of bars indicates that the
overhead increases significantly when nested paging is not
available and software must use shadow page tables instead.

We also measured the performance of paravirtualiza-
tion by running the benchmark in Xen’s Dom0 and under
L4Linux 2.6.32. In contrast to systems with full virtual-
ization, the paravirtualized environments had direct access
to the disk. For Xen we used a modified C library that
avoids costly segment register reloads for thread-local stor-
age. Without this modification the performance of Xen is
substantially degraded.

For L4Linux, we measured a higher performance over-
head than what has been reported in 1997 [13]. Since then,
L4Linux has undergone several architectural changes with
the goal of reducing the porting effort. In particular, the

2 Our test system is not in the Hardware Compatibility List for ESXi.
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Figure 5: Linux kernel compilation in fully virtualized and paravirtualized environments on Intel Core i7 and AMD Phenom CPUs. More
than 99% of native performance can be achieved when nested paging (EPT/NPT), tagged TLBs (VPID/ASID), and large host pages are used.

performance optimization of small address spaces, which
uses segmentation to mimic the behavior of a tagged TLB, is
no longer present. As a result, each transition between kernel
and user mode in L4Linux requires an address space switch
and a complete TLB flush. The overhead caused by the TLB
flushes and subsequent refills is approximately 9%.

The last set of bars presents the results for the kernel
compilation benchmark on an AMD Phenom X3 8450 CPU
with 2.1 GHz and 4GB DDR2 RAM. We measured the
performance of KVM-L4 on the AMD machine, because
KVM-L4 currently does not support Intel CPUs. The results
reveal that the performance overhead for NOVA is even
lower than on the Intel machine. The primary reason is that
AMD CPUs support 4MB host pages with two-level page
tables, whereas Intel CPUs use 2MB host pages with four-
level page tables.

8.2 Disk Performance

To provide I/O access to a virtual machine, the VMM can
either fully virtualize an I/O device or use the IOMMU
to grant its VM direct access to a hardware device. We
analyze the overhead for both approaches in the following
benchmarks. The overhead for full virtualization of an I/O
device can be split into three parts:

Device Virtualization: The guest operating system in a
virtual machine programs a virtual device using I/O and
MMIO instructions. Each such instruction causes a VM
exit and requires a round trip to the VMM to emulate the
behavior of the device.

Interrupt Virtualization: Platform devices signal the com-
pletion of a request by generating an interrupt. Each hard-
ware interrupt causes a VM exit. If the virtual CPU runs with
interrupts disabled and the virtual-machine monitor needs to
inject a virtual interrupt, another VM exit occurs when the
virtual CPU reenables interrupts. Masking, acknowledging,

and unmasking the interrupt at the virtual interrupt controller
causes up to four more VM exits.

Data Transfer: Copying data from a physical to a virtual
device does not cause VM exits, but adds an overhead that
depends on the size of the data.

In Figure 6 we compare the performance of our virtual
AHCI SATA controller to the same SATA controller in the
host machine. The benchmark issues sequential disk reads
with different block sizes. To eliminate the influence of the
buffer cache, we configured the Linux VM to use direct I/O.

The graph labeled Native shows the CPU utilization of the
AHCI driver for the hardware device. In our first experiment
we assigned the physical AHCI controller directly to the
virtual machine. The IOMMU performed the translation of
guest-physical to host-physical addresses. The graph labeled
Direct illustrates the overhead for interrupt virtualization and
DMA remapping. In a second experiment, we virtualized the
AHCI controller. The VMM intercepts all MMIO operations
and copies the DMA descriptors from the virtual device
to the host driver. The host driver performs DMA directly
to and from the buffers of the virtual machine, which
eliminates the need for copying the data. The graph labeled
Virtualized includes the additional overhead for full device
virtualization. With block sizes of less than 8 Kbytes the
throughput scales with the block size and request rate and
the CPU utilization remains nearly constant. For larger block
sizes, the disk bandwidth becomes the limiting factor and the
request rate and CPU utilization drop linearly.

The graphs illustrate that the virtualization overhead
depends on the number of disk requests, but is independent
of the block size. A directly assigned disk controller nearly
doubles the CPU utilization. For example, with a block size
of 16 Kbytes and a rate of 4100 requests per second, the
CPU utilization increases from 3.7% to 7%. At 2.67 GHz
this corresponds to 21500 cycles for handling 6 VM exits
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Figure 6: CPU overhead for sequential disk reads with different
block sizes. The benchmark compares a fully virtualized and a
directly assigned AHCI disk controller with the native counterpart.

per request. The fully virtualized AHCI controller doubles
the CPU utilization again. It requires 6 additional VM exits
to intercept the MMIO operations that program the device.
MMIO exits are among the most expensive VM exits, be-
cause they must be decoded and executed by the instruction
emulator.

8.3 Network Performance

We measured the network performance of our implementa-
tion with the Netperf benchmark. We configured the sender
machine to generate a UDP packet stream with constant
bandwidth using a token bucket traffic shaper. The receiver
was the Intel Core i7 machine with an Intel 82567 Gigabit
Ethernet controller, running Linux 2.6.32. In Figure 7 we
compare the CPU utilization for different bandwidths on
native hardware and in a virtual machine that had the
network controller directly assigned to it.

The interrupt rate on the receiver side depends on the
bandwidth of the incoming network stream and the packet
size. Interrupt coalescing in the network controller limits the
interrupt rate by delaying the generation of the next interrupt
until multiple packets have been received. The overhead
for network virtualization scales linearly with the network
interrupt rate. A network stream that generates twice as
many interrupts doubles the virtualization overhead. We
compute the actual overhead per interrupt by multiplying the
CPU utilization difference with the clock speed and dividing
by the interrupt rate. For example, a network stream with a
bandwidth of 124 MBit/s and a packet size of 1472 bytes
generates approximately 11000 interrupts per second and
causes 6 VM exits per interrupt. We measured a 6.7% higher
CPU utilization for the virtual machine, which corresponds
to an overhead of approximately 16300 cycles per interrupt
or 4.3ms per MB. For larger or smaller packets, the overhead
decreases or increases respectively. With interrupt coalesc-
ing, the maximum rate is approximately 20000 interrupts per
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Figure 7: CPU overhead for receiving UDP streams with different
bandwidths and packet sizes of 64, 1472 and 9188 bytes. The
benchmark compares a directly assigned NIC against a native NIC.

second. A further increase in stream bandwidth only gen-
erates additional packet processing overhead. Because this
overhead is the same for native and virtual environments,
the graphs start to converge at that point.

8.4 Transition Times

To determine the overhead introduced by our virtualization
environment in more detail, we conducted a series of mi-
crobenchmarks to measure the transition times between user
and kernel mode and between guest and host mode. Table 1
lists the processors used in the following benchmarks.

CPU Model Core Frequency
AMD Opteron 2212 Santa Rosa (K8) 2.00 GHz
AMD Phenom 9550 Agena (K10) 2.20 GHz
Intel Core Duo T2500 Yonah (YNH) 2.00 GHz
Intel Core2 Duo E6600 Conroe (CNR) 2.40 GHz
Intel Core2 Duo E8400 Wolfdale (WFD) 3.00 GHz
Intel Core i7 920 Bloomfield (BLM) 2.67 GHz

Table 1: Processors Used for Microbenchmarks

Figure 8 correlates the transition cost between user and
kernel mode (lowermost box) with the basic cost for a
message transfer between two threads. The performance
of inter-domain communication is crucial for the overall
performance of our system because all virtualization events,
except for those related to the virtual TLB, require a message
to be sent from the microhypervisor to the VMM and back.
Furthermore, the VMM uses inter-domain communication
to exchange data with host device drivers.

If both threads are located in the same address space,
the basic cost for a message transfer comprises the number
of clock cycles for entering and leaving the hypervisor
(sysenter, sti, sysexit) and the cycles for the hypervisor IPC
path (capability lookup, portal traversal, context switch).
The actual cost depends on the size of the message that
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is transferred (additional 2–3 cycles per word). For an IPC
between threads in different address spaces there is an extra
cost for flushing and repopulating the translation lookaside
buffer (TLB effects).

Figure 9 correlates the transition cost between guest and
host mode (lowermost box) with the cost for handling a
vTLB miss on platforms without hardware-based nested
paging. The last two bars show the performance difference
when using VPID-tagged TLB entries. The cost for handling
a vTLB miss includes the number of clock cycles for
the VM exit and subsequent VM resume, the number of
clock cycles for performing six VMREAD instructions to
determine the cause of the vTLB miss, and the cost for
parsing the guest and host page table to update the shadow
page table (vTLB fill). The hardware transition cost accounts
for almost 80% of the total vTLB miss overhead.

Figure 9 shows that the transition times between guest
and host mode decrease with each new processor generation.
Because the performance of our system largely depends
on these hardware-induced costs, we believe that current
hardware trends to lower transition times will further reduce
the virtualization overhead in the future.

8.5 Frequency of VM Events

The virtualization overhead depends not only on the cost for
transitions between guest and host mode, but also on the
frequency of VM exits that cause such transitions. Table 2
shows the distribution of VM exits and related events for the
kernel compilation and disk benchmarks.

The most prominent exits with nested paging are port
I/O for acknowledging and masking virtual interrupts, fol-
lowed by external interrupts caused by hardware timers and
MMIO accesses that program the virtual disk controller.
Without nested paging, the vTLB-related exits (vTLB fills
and guest page faults) dominate. The table illustrates that
nested paging reduces the number of VM exits by two orders
of magnitude. The VM event distribution also shows that

0

500

1000

1500

2000

2500

3000

YNH CNR WFD BLM BLM
VPID

1355ns 1140ns 694ns 527ns 491ns

C
PU

cl
oc

k
cy

cl
es

Exit+Resume VMREAD vTLB Fill

2087 2122

1324
1091 1016

306 312

144

36 36

317 304

268

279 259

Figure 9: vTLB Miss Microbenchmark

Linux issues six MMIO operations for each disk read or
write request. An additional six VM exits are caused by
interrupt virtualization.

Event EPT vTLB Disk 4k
vTLB Fill 181966391
Guest Page Fault 13987802
CR Read/Write 3000321
vTLB Flush 2328044
Port I/O 610589 723274
INVLPG 537270
Hardware Interrupts 174558 239142
Memory-Mapped I/O 76285 75151 600102
HLT 3738 4027 101185
Interrupt Window 2171 3371 961∑

867341 202864793
Injected vIRQ 131982 177693 102507
Disk Operations 12715 12526 100017
Runtime (seconds) 470 645 10

Table 2: Distribution of Virtualization Events

Dividing the time difference of 1.27 seconds between the
second and third bar in Figure 5 by the 867341 VM exits
from Table 2 reveals that the average cost for handling a VM
exit in NOVA is approximately 3900 cycles. This cost can
be broken down as follows: 1016 cycles (26%) are caused
by the transition between guest mode and host mode. The
transfer of virtual CPU state from the microhypervisor to the
VMM and back requires an IPC in each direction and costs
approximately 600 cycles (15%). The remaining 59% can be
attributed to instruction and device emulation in the VMM.
It should be noted that only the overhead of communication
between the microhypervisor and the VMM (15% of the
total cost for handling a VM exit) is a direct consequence
of our decomposed virtualization architecture.



9. Discussion and Future Work

Our evaluation shows that the performance overhead of full
virtualization on current hardware can be as low as 1% for
memory-bound workloads. We compared memory virtual-
ization using hardware-based nested paging to a software
implementation that uses shadow page tables and observed
that nested paging can eliminate more than 99% of the
VM exits and thereby reduce the virtualization overhead
from more than 20% to 1–3%.

We also quantified the overhead of using small host
pages, which is a requirement for efficient VM page-sharing
algorithms, with 2%. The introduction of tagged TLBs in
recent processors eliminates the need for TLB flushes during
VM transitions. Figure 8 illustrates that extending hardware
support for TLB tags to user address spaces would reduce
the inter-domain communication cost in NOVA by 50%.
Expensive TLB flushes and refills on address-space switches
would become unnecessary.

We are currently extending the virtual BIOS of the VMM
to support Windows as a guest operating system. We also
research how fair resource scheduling between VMs can be
implemented and how virtual machines can guarantee cer-
tain real-time properties. Furthermore, we plan to improve
the network subsystem with multi-queue SR-IOV network
cards, which facilitate direct assignment of network queues
to VMs and enable a drastic boost in network performance.

10. Conclusions

In this paper we argue that a small and simple virtualization
layer is crucial for the security of hosted guest operating
systems. To minimize the attack surface, NOVA takes an ex-
treme microkernel-like approach to virtualization by moving
most functionality to user level. Because our entire system
adheres to the principle of least privilege, we achieve a
trusted computing base that is at least an order of magnitude
smaller than that of other full virtualization environments.
One interesting result of this work is that such an architecture
can be built with negligible performance overhead, thanks to
recent hardware virtualization features and careful system
design and implementation.
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